
CRM 97-61.1 O/August 1997

Irreducible Semi-Autonomous
Adaptive Combat (ISAAC): An
Artificial-Life Approach to Land
Warfare (U)

Andrew llachinski

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Center for Naval Analyses
4401 Ford Avenue • Alexandria, Virginia 22302-1498

BHOWJ^0'SSEOIBD
a

Approved for distribution: Au

Dr/lgor Mikolic-Torreira
Director, Systems and Tactics Team
Operating Forces Division

This document represents the best opinion of CNA at the time of issue.
It does not necessarily represent the opinion of the Department of the Navy.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
For copies of this document, call the CNA Document Control and Distribution Section (703)!

Copyright © 1997 The CNA Corporation

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of Information Is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of Information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Protect (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
August 1997

3. REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE
Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An
Artificial-Life Approach to Land Warfare

6. AUTHOR(S)
A Ilachinski

5. FUNDING NUMBERS
C - N00014-96-D-0001

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Center for Naval Analyses
4401 Ford Avenue
Alexandria, Virginia 22302-1498

8. PERFORMING ORGANIZATION
REPORT NUMBER

CRM 97-61.10

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This study is a follow-on effort to a recently completed project, sponsored by the
Commanding General, Marine Corps Combat Development Command, that assessed the general
applicability of the new sciences to land warfare. "New Sciences" is a catch-all phrase
that refers to the tools and methodologies used in nonlinear dynamics and complex systems
theory to study physical systems that exhibit a "complicated dynamics." CNA is currently
developing a multiagent-based simulation of notional combat called ISAAC (Irreducible
Semi-Autonomous Adaptive Combat), a preliminary version of which is described in this
report. ISAAC takes a bottom-up, synthesist approach to the modeling of combat, vice the
more traditional top-down, or reductionist approach.

14. SUBJECT TERMS artificial intelligence, computerized simulation, ground combat,
ISAAC (irreducible semi-autonomous adaptive combat), Lanchester method, land warfare, modeling
and simulation (M&S) statistical data, user manuals, war games

15. NUMBER OF PAGES
399

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-l
Prescribed by ANSI Std. Z39-18
298-102

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

"Only when we are able to view life-as-ute-knoiv-it in the larger
context of Ufe-as-iUxndd-be will we really understand the nature
of the beast Artificial Life (AL) is a relatively new field
employing a synthetic approach to the study of tife-as-itcould-be.
It views life as a property of the organization of matter, rather
than a property of the matter which is so organized."

- Chris Langten, Artificial Life (1989)

Now, substitute the word combat for life.

Image from ftp://parcf^>.xerox.com/pub/dynamics/dynamics.html

"War is ... not the action of a living force upon lifeless mass
but always the collision of two living forces."

- Carl von Clausewitz, On War

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Executive Summary

This study is a follow-on effort to a recently completed project,
sponsored by the Commanding General, Marine Corps Combat
Development Command (MCCDC), that assessed the general
applicability of the new sciences to land warfare. "New sciences" is a
catch-all phrase that refers to the tools and methodologies used in
nonlinear dynamics and complex systems theory to study physical
systems that exhibit a "complicated dynamics."

Perhaps the single most important lesson of the new sciences is the
observation that the collective decentralized interaction among
individual agents obeying local rules often appears locally disordered
but induces - on a higher level - a globally ordered pattern of behavior.
The central thesis of this report (and developed in earlier reports [1]
and [2]) is that the general mechanisms responsible for emerging
patterns in complex adaptive systems can be used to further our insight
into the patterns of behavior that arise on the real combat batdefield.
That is, that land combat can be modeled as a complex adaptive system.

As a background to why such an approach might be an important one
to take at this time - and how it differs from most current
state-of-the-art models of land combat - consider what has been, for the
last century, the "conventional wisdom" regarding our fundamental
understanding of the basic processes of war.

In 1914, F. W. Lanchester introduced a set of coupled ordinary
differential equations - now commonly called the Lanchester Equations
(LEs) - as models of attrition in modern warfare [3]. Similar ideas
were proposed around that time by Chase [4] and Osipov [5]. The
virtue of the LEs, and their intuitive appeal, lies in their shear
simplicity. For example, their most basic form consists simply of the
statement that one side's attrition rate is proportional to the opposing
side's size. The Lanchesterian approach, in general, represents a view of
combat in which the driving phenomenon is always force-on-force
attrition. This view has served venerably as the conceptual foundation
upon which most modern theories of combat attrition are based.

From a fundamental standpoint, however, there are many limitations to
using LEs to represent modern combat. Two of the biggest limitations
are (1) they do not account for any spatial variation of forces (i.e., no
link is established, for example, between movement and attrition) and
(2) they completely disregard the human factor in combat (i.e., the
psychological and/or decision-making capability of the human
combatant).

Therefore, LE-derived models of land warfare are inadequate for
assessing advanced warfighting concepts, such as those being explored

iii

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

by the Marine Corps. In particular, the Lanchesterian view of combat
does not adequately represent the Marine Corps' vision of combat:
small, highly trained, well-armed autonomous teams working in
concert, continually adapting to changing conditions and
environments. As an alternative, we suggest that recent developments in
complex systems theory - particularly the set of multiagent-based
simulation tools developed in the artificial life community - provide a
new set of tools for addressing land warfare in a fundamentally different
way.

To this end, CNA is currently developing a multiagent-based simulation
of notional combat called ISAAC (Irreducible Semi-Autonomous
Adaptive Combat), a preliminary version of which is described in this
report. ISAAC takes a bottom-up, synthesist approach to the modeling of
combat, vice the more traditional top-down, or reductionist approach.

Models based on differential equations homogenize the properties of
entire populations and ignore the spatial component altogether. Partial
differential equations - by introducing a physical space to account for
troop movement - fare somewhat better, but still treat the agent
population as a continuum. In contrast, ISAAC consists of a discrete
heterogeneous set of spatially distributed individual agents (i.e.,
combatants), each of which has its own characteristic properties and
rules of behavior. These properties can also change (i.e., adapt) as an
individual agent evolves in time.

The basic element of ISAAC is an ISAAC Agent (or ISAACA), which
loosely represents a primitive combat unit (infantryman, tank, transport
vehicle, etc.) that is equipped with the following characteristics:

• A default local-rule set specifying how to act in a generic
environment (i.e., an embedded "doctrine")

• Goals directing behavior ("mission")

• Sensors generating an internal map of environment ("situational
awareness")

• An internal adaptive mechanism to alter behavior and/or rules.

A global rule set determines combat attrition, reconstitution and (in
future versions) reinforcement. ISAAC also contains both local and
global commanders, each with their own command radii, and obeying
an evolving C2 hierarchy of rules.

Most traditional models focus on looking for equilibrium "solutions"
among some set of (pre-defined) aggregate variables. The LEs are
effectively mean-field equations (in the parlance of physics), in which

iv

Irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

certain variables such as attrition rate are assumed to represent an
entire force and the outcome of a batde is said to be "understood"
when the equilibrium state has been explicitly solved for. In contrast,
ISAAC focuses on understanding the kinds of emergent patterns that
might arise while the overall system is out of equilibrium.

In ISAAC, the "final outcome" of a battie - as defined, say, by measuring
the surviving force strengths - takes second stage to exploring how two
forces might "co-evolve" during combat. A few examples of the
profoundly non-equilibrium dynamics that characterizes much of real
combat include: the sudden "flash of insight" of a clever commander
that changes the course of a battle; the swift flanking maneuver that
surprises the enemy; and the serendipitous confluence of several
far-separated (and unorchestrated) events that lead to victory. These
are the kinds of behavior that Lanchesterian-based models are in
principle incapable of addressing. ISAAC represents a first step toward
being able to explore such questions.

ISAAC is designed to allow the user to explore the evolving patterns of
macroscopic behavior that result from the collective interactions of
individual agents, as well as the feedback that these patterns might have
on the rules governing the individual agents' behavior. ISAAC can
currendy be run in three different "modes":

• Interactive Mode, in which the user can make 'on-the-fly'
changes to the values of any (or all) parameters defining a given
run (including the "decision-making personality" of individual
ISAACAs). This mode is well suited for playing simple "What iß"
scenarios and for interactively "searching" for interesting
emergent behavior.

• Data-Collection Mode, in which the user can (1) generate time
series of various changing quantities describing the step-by-step
evolution of a battle, and (2) keep track of certain measures of
"how well" mission objectives are met at a batde's conclusion.
Additionally, the user can generate complete behavioral profiles
on two dimensional slices of ISAAC'S N-dimensional parameter
space.

• Genetic Algorithm "Evolver" Mode, in which the user can evolve
a local rule set (i.e., "personality") for one side that is "best"
suited for performing some well-defined mission against a fixed
rule set for the other. This mode illustrates how programs such
as this can eventually be used to evolve real-world "tactics" and
"strategies."

While this preliminary version of ISAAC can do no more than suggest
new ways of thinking about some old issues, it is encouraging to note

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

that, even at this early juncture, ISAAC already has an impressive
repertoire of emergent behaviors:

• Forward advance

• Frontal attack

• Local clustering

• Penetration

• Retreat

• Attack posturing

• Containment

• Flanking Maneuvers

• Defensive posturing

• "Guerilla-like" assaults

• Encirclement of enemy forces

• many more ...

Moreover, ISAAC frequently displays behaviors that appear to involve
some form of "intelligent" division of red and blue forces to deal with
local "firestorms" and skirmishes, particularly those forces whose
personalities have been "evolved" (via a Genetic Algorithm) to perform a
specific mission. It must be remembered that such behaviors are not
hard-wired but are effectively an emergent property of a decentralized
and nonlinear local dynamics.

ISAAC has been developed primarily to address the basic question: "To
what extent is land combat a self-organized emergent phenomenon?" As such, its
intended use is not as a full system-level model of combat but as an
interactive toolbox (or "conceptual playground") in which to explore
high-level emergent behaviors arising from various low-level (i.e.,
individual combatant and squad-level) "interaction rules." The idea
behind ISAAC is not to model in detail a specific piece of hardware
(M16 rifle, M101 105mm howitzer, etc.), but to provide an
understanding of the fundamental behavioral tradeoffs involved among
a large number of notional variables.

The payoff of using ISAAC, or some other multiagent-based model of
land combat, is a radically new - and decidedly non-Lanchesterian -
way of looking at some fundamental issues of land combat. Specifically,
ISAAC is being designed to help analysts ...

• Understand how all of the different elements of combat fit
together in an overall "combat phase space:" Are there regions that
are "sensitive" to small perturbations, and might there be a way to exploit

VI

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

this in combat (as in selectively driving an opponent into more sensitive
regions of phase space) ?

• Understand the out-of-equilibrium patterns of behavior vice the
approach to equilibrium states stressed by most conventional
models

• Identify and explore emergent collective patterns of behavior on
the battlefield

• Assess the value of information: How can I exploit what I know the
enemy does not know about me?

• Explore tradeoffs between centralized and decentralized
command-and-control (C2) structures: Are some C2 topologies more
conducive to information flow and attainment of mission objectives than
others? What do the emergent forms of a self-organized C2 topology look
like?

• Provide a natural arena in which to explore consequences of
various qualitative characteristics of combat (unit cohesion,
morale, leadership, etc.)

• Study the general efficacy of combat doctrine and tactics

• Explore emergent properties and/or other "novel" behaviors
arising from low-level rules (even doctrine if it is well encoded)

• Capture universal patterns of combat behavior by focusing on a
reduced set of critical drivers

• Suggest likelihood of possible outcomes as a function of initial
conditions

Provide near-real-time tactical decision aids by providing a
"natural selection" (via a genetic algorithm) of tactics and/or
strategies for a given combat scenario.

ISAAC provides a natural arena in which to explore the Clausewitzian
"fog-of-war," or the effects of uncertainties and/or inaccuracies of
intelligence data and of time-delays in reporting information. More
important, from an Information Warfare perspective, ISAAC provides a
framework for quantifying the "value" of information on a batüefield.
ISAAC can, in principle, be used to explore the consequences of given
(personality-defined) force and/or weapon mixes. It can also be used to
re-examine traditional measures of combat effectiveness and define
requirements for what might loosely be called nonlinear data collection,
which refers to data that capture the continuously evolving

vii

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

relationships among all of the interdependent components of combat
(as compared with more static measures — such as force attrition —
commonly used by conventional models).

The ultimate goal is for ISAAC to become a fully developed complex
systems theoretic analyst's toolbox for identifying, exploring and possibly
exploiting emergent collective patterns of behavior on the battlefield.

Organization of Paper

This paper is organized into seven main sections, each of which is
relatively self-contained:

• Introduction. This section provides a thorough discussion of the
background behind and motivation for the artificial-life
approach to modeling land warfare, including several examples
of decentralized self-organization. It also provides a short general
introduction to multiagent-based modeling.

• Overview of ISAAC. This section provides a detailed overview of
the design philosophy and dynamical features of ISAAC. It
discusses the overall program flow, introduces ISAACAs and what
is meant by an ISAACA "personality," and provides an overview
of ISAAC'S built-in command and control hierarchy.

• User's Guide to ISAAC. This section provides a self-contained
user's guide to ISAAC. This guide includes step-by-step
instructions for loading the program, providing data input,
running and interpreting all graphics output, and interacting
with the program as it is running. This section also includes a
detailed listing of all parameters appearing in ISAAC'S input data
file.

• Sample Runs. This section provides a small sampling of ISAAC'S
"repertoire" of dynamical patterns of behavior by focusing on
thirteen sample runs. These runs illustrate such "emergent"
behaviors as forward advance, penetration, encirclement,
containment, and flanking maneuvers, among many others.
Some samples also show the effects of communications and both
local and global command structures.

• Data Collection. This section provides an overview of ISAAC'S
rudimentary data collection capability (including a time series of
remaining force size, distance and cluster-size distributions, and
spatial entropy). A discussion is provided on how to use a
separate stand-alone program to effectively "map out" ISAAC'S

vm

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

dynamical behavior over two-dimensional slices of ISAAC'S
(much larger) overall N-dimensional parameter space.

• Genetic Algorithm Evolution. This section essentially "mirrors" the
content of sections 2 through 5 by providing a self-contained
discussion of how to use a genetic algorithm to "evolve" ISAACA
personalities. It contains an overview of the basic genetic
algorithm recipe as it is used by ISAAC, defines "mission fitness,"
provides a user's guide to the stand-alone program that
incorporates this recipe (including a complete listing of the
contents of the appropriate input and output data files), and
uses several sample runs to illustrate how this stand-alone
program can be used to "evolve" personalities to perform a
specific mission.

• Future Enhancements. The final section discusses future design
plans and provides a conceptual roadmap for how ISAAC can be
used to explore some fundamental issues in land warfare, both in
the short and long term. A more speculative discussion is
provided centering on ways to use ISAAC to explore
self-organized command and control structures and novel
"self-organized" filtering of battlefield information.

Additional information is provided in the appendices:

• Appendix A consists of a short primer on cellular automata, and is
useful background reading for those not familiar with this
common tool in complex system theory modeling.

• Appendix B provides a primer on genetic algorithms, and
includes a short description of a novel way (first proposed by
Hillis [6]) in which a genetic algorithm's ability to "solve" certain
problems might be enhanced by pitting one genetic algorithm
against another.

• Appendix C contains a fragment of the ANSI-C source code for
ISAAC, including header files, structures, the main function
module (in its entirety) and a short description of all other
functions appearing in the main module.

• Appendix D contains a fragment of the ANSI-C source code for
ISAAC_GA (i.e., the stand-alone genetic algorithm "evolver"),
including header files, structures, and the main function module
(in its entirety).

IX

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• Appendix E defines each of the individual data fields appearing in
ISAAC'S output statistics files. This information can be used to
generate desired plots using a stand-alone plotting program.

• Appendix F provides a brief heuristic description of (and C source
code for) the cluster counting algorithm used by ISAAC'S data
collection module.

• Appendix G contains sample data input files for ISAAC and the
stand-alone genetic algorithm "personality-evolver" program.

ISAAC is very much a "work in progress." This paper, and all
accompanying programs and data files, must therefore be viewed as
preliminary work only. However, even at this early stage of
development, ISAAC shows where the serious user can gain significant
insight into the fundamental processes of land combat.

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Table of Contents

Introduction 1
Background 2
Motivation 3

Lanchester equations 5
Artificial Life 7
Decentralized Self-Organization 9

Cellular Automata 9
"Boids" 11
Collective Sorting 12

Agent-Based Models 13
Recent Examples of Agent-Based Simulations 16
Agent-Based Simulations vs. Traditional Modeling

Approaches 16
Agent-Based Simulations vs. Traditional Artificial

Intelligence 17

Overview of ISAAC 19
WhatisISAAC? 19
What is an ISAACA? 21
Design Philosophy 22

Information Levels 23
Guiding Principles 24

Combat Battlefield 25
Program Flow 26
ISAACARanges 27

Sensor Range 27
Fire Range 27
Threshold Range 28
Movement Range 28
Communications Range 28

ISAACA Personalities 29
Personality Weight Vector 29
Squads 31

White Forces 31
ISAACA Move Selection 31

Example 33
Move Sampling Order 34

ISAACA Adaptability 34
Advance Constraint 35
Cluster Constraint 36
Combat Constraint 36
Minimum Local-Distance Constraints 36

ISAACA Combat 37

XI

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Defense 38
Reconstitution 39
Fratricide 39

Communication 40
Command and Control 40

Local Command 42
Local Command Area 43
Subordinate ISAACAs 44
Example 45

Global Command 45
GC Command of LC-LC interaction 45
GC Command of Autonomous LC Movement 47
LC Response to GC Commands 49

A Concise User's Guide to ISAAC . 51
Hardware Requirements 51

Computer Memory 51
Graphics 51

Installing ISAAC 52
Starting ISAAC 52
Contents of ISAAC'S Input Data File 54

General Battle Parameters 56
batde_size 56
init_dist_flag 56
R_box_(l,w) 57
RED_cen_(x,y) 57
B_box_(l,w) 57
BLUE_cen_(x,y) 57
B_flag_(x,y) 57
R_flag_(x,y) 57
termination? 57
move_order? 58
combat_flag? 58
terrain_flag? 58
red_frat_flag? 58
blue_frat_flag? 58
red_frat_rad 58
blue_frat_rad 59
red_frat_prob 59
blue_frat_prob 59
reconst_flag? 59
RED_recon_time 59
BLUE_recon_time 59

Statistics Parameters 59
stat_flag? 60
goal_stat_flag? 60
center_mass_flag? 60

XÜ

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

interpoint_flag? 60
entropy_flag? 60
cluster_l_flag? 61
cluster_2_flag? 61
neighbors_flag? 61

Blue Global Command Parameters 61
BLUE_global_flag? 61
GC_fear_index 61
GC_w_alpha 62
GC_w_beta 62
GC_frac_R[l] 62
GC_frac_R[2] 62
GC_w_swath[l] 63
GC_w_swath[2] 63
GC_w_swath[3] 63
GC_max_red_f 63
GC_help_radius 63
GC_h_thresh 63
GC_rel_h_thresh 63

Red Global Command Parameters 64
Blue Local Command Parameters 64

BLUE_local_flag 65
num_BLUE_cmdrs 65
B_patch_type 65
B_patch_flag 65
(n)_B_undr_cmd 65
(n)_B_cmnd_rad 65
(n)_B_SENSOR_rng 66
(n)_wl:alive_B 66
(n)_w2:alive_R 66
(n)_w3:injrd_B 66
(n)_w4:injrd_R 66
(n)_w5:B_goal 66
(n)_w6:R_goal 66
(n)_B_THRS_range 67
(n)_ADVANCE_num 67
(n)_CLUSTER_num 67
(n)_COMBAT_num 67
(n)_B_w_alpha 67
(n)_B_w_beta 67
(n)_B_w_delta 68
(n)_B_w_gamma 68
(n)_w_obey_GC_def 68
(n)_w_help_LC_def 68

Red Local Command Parameters 68
Blue ISAACA Parameters 69

XIII

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

num_blues 69
squads 69
num_per_squad 69
M_range 69
personality 69
wl_a:B_alive_B 71
w2_a:B_alive_R 71
w3_a:B_injrd_B 71
w4_a:B_injrd_R '. 71
w5_a:B_B_goal 72
w6_a:B_R_goal 72
wl_i:B_alive_B 72
w2_i:B_alive_R 72
w3_i:B_injrd_B 73
w4_i:B_injrd_R 73
w5_i:B_B_goal 73
w6_i:B_R_goal 73
w7:B_loc_comdr 74
w8:BJoc_goal 74
defense_flag 74
alive_strength 74
injured strength 74
S_range 75
F_range 75
COMM_flag 75
COMM_range 75
COMM_weight 75
movement_flag 76
T_range 76
A:ADVANCE_num 76
A:CLUSTER_num 76
A:COMBAT_num 76
I:ADVANCE_num 77
I:CLUSTER_num 77
I:COMBAT_num 77
T_RANGE_(m,M) 77
A:ADV_(m,M) 78
A:CLUS_(m,M) 78
A:COMB_(m,M) 78
I:ADV_(m,M) 79
I:CLUS_(m,M) 79
I:COMB_(m,M) 79
A:B_B_min_dist 80
A:B_R_min_dist 80
A:B_B_goal_min 80
I:B_B_min_dist 80

xiv

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

I:B_R_min_dist 81
I:B_B_goal_min 81
shot_prob 81
B_max_eng_num 81

Red ISAACA Parameters 81
Terrain Parameters 82

(n)_size 82
(n)_center_x 82

(n)_center_y 82
Sample Graphics Display 83

ISAACA Data Regions 85
Squad Identifier 85
Range Parameters 85
Offensive/Defensive Parameters 86
Personality Weight Vector 86
Constraint Parameters 86
Reconstitution 87
Fratricide 87
Attrition 87

"Hot-Key" Menu 88
On-the-Fly Parameter Changes 90

Combat Parameters 92
Red ISAACA Parameters 93
Blue ISAACA Parameters 95
Red Local Command Parameters 95
Blue Local Command Parameters 97
Red Global Command Parameters 97
Blue Global Command Parameters 97
Statistics Calculations 97

Sample Runs 99
Sample Run #1: MISMATCH.out 101
Sample Run #2: FLUID_l.out 105
Sample Run #3: FLUID_2.out 108
Sample Run #4: PRECESS.out 110
Sample Run #5: GOALDEFl.out 113
Sample Run #6: GOALDEF2.out 115
Sample Run #7: CIRCLE.out 117
Sample Run #8: FIRESTMl.out 119
Sample Run #9: FIRESTM2.out 122
Sample Run #10: SENSORout 123
Sample Run #11: LOCALCMD.out 126
Sample Run #12: GLBALCMD.out 129
Sample Run #13: BATTLEl.out 132

Data Collection 135
Built-in Statistics 135

XV

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Classes of Data 136
Class 1: Force sizes 137
Class 2: ISAACA interpoint distance distributions

.. 137
Class 3: ISAACA neighbor-number distributions ... 137
Class 4: ISAACA:enemy-flag interpoint distance

distributions 137
Class 5: ISAACA cluster-size distributions 137
Class 6: Center-of-mass positions 138
Class 7: Spatial entropy 138

Sample Output 140
Taking 2D "Slices" of ISAAC'S Parameter Space 146

The Basic Idea 148
Mission 148
Mission Fitness 148
Pseudo-code 149

Concise User's Guide to ISAAC_PM 149
Starting ISAAC_PM 149

Contents of ISAAC_PM's Data Input File:
PHASE.dat 152

Contents of ISAAC_PM's Data Output File:
PHASEOUT.dat 153

Sample Graphics Display 154
Sample Output 157

Sample #1: Forward Advance 157
Sample #2: Red Offense 159
Sample #3: Red Defense 160

Genetic Algorithm Evolutions of ISAACA Personalities 163
Genetic Algorithms : Brief Overview 164

The Basic GA Recipe 165
Genetic Algorithms : Adapted to ISAAC 166

Personality Chromosome 167
Mission Objective 169

Mission primitive m; 171
Mission primitive m2 172
Mission primitive m3 172
Mission primitive m4 172
Mission primitive m5 173
Mission primitive m6 174
Mission primitive m7 175
Mission primitive m8 175
Mission primitive m9 176
Mission primitive m10 176

ISAAC_GAs GA Recipe 177
Concise User's Guide to ISAAC_GA 178

Starting ISAAC_GA 178

xvi

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Contents of ISAAC_GA's Data Input File: GAJDATA ... 179
num_generations 180
num_initial_conds 180
max_time_to_goal 180
penalty_power 180
best_personalities_to_file? 181
min_dist_genes_flag 181
initial_condition_genes_flag 181
wl_time_to_goal 181
w2_friendly_loss 181
w3_enemy_loss 181
w4_red_to_blue_survival_ratio 182
w5_friendly_CM_to_enemy_flag 182
w6_enemy_CM_to_friendly_flag 182
w7_friendly_near_enemy_flag 182
w8_enemy_near_friendly_flag 182
w9_red_fratricide_hits 182
wlO_blue_fratricide_hits 182
termination_code? 182
flag_containment_range 183
containment_number 183
red_CM_to_BF_frac 183

ISAACA Chromosome Entries: gene[i] 183
Contents of ISAAC_GA's Data Output Files 186

GA_STAT.dat 186
Sample Graphics Display 188

Fitness Summary 188
"Hot-Key" Menu 189

Sample Runs 192
Typical Run-Times 192
Typical Learning Curves 192
Sample GA Run #1 194
Sample GA Run #2 196

Future Enhancements to ISAAC 203
Basic Enhancements to the "Core Engine" 204

More Realistic ISAACA State-Space 204
Enhanced Offensive and Defensive Capabilities 205
An Enhanced Command and Control Structure 206
Enhanced Personality "Value-Systems" 208

Generalized Personality Matrix 208
Hostility Rings 209

Greater "Depth" to, and Variety of, Local Moves 210
Added Environmental Realism 210
Enhanced Combat Adjudication 211

Targeting Strategies 212
Memory and Learning 212

xvii

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Memory 213
Neural-Network-Derived Move Selection 214
Reinforcement Learning 214

Nested ISAAC Dynamics 216
Data Collection Enhancements 217

Trajectory-Difference Measures 218
Combat Entropy 218
Activity Maps 220

Enhancements to GA Evolution 221

What Is ISAAC Useful For? 225
How is Work in the "New Sciences" Actually Done? 228
Sample Issues 230

Centralized Versus Decentralized Command and
Control Structure 230
A Self-Organized C2 Structure? 231

The "Human Element" of Combat Modeling 232
Combat "State- Space" 233

Miscellaneous Issues and Questions 235
Selfishness vs Altruism 235

Kauffman's Patch-Optimization Procedure 236
Self-Organized Criticality in Combat 236
Scaling Problem 239
Self-Organized Information 239

Epilogue: On the Use of Simulations 243

Appendix A: A Brief Primer on Cellular Automata 245
Example #1: One-dimensional CA 246
Example #2: Conway's Life 248
Example #3: Lattice Gases 250
Example #4: Collective Behavior in Higher Dimensions ... 251

Appendix B: A Brief Primer on Genetic Algorithms 253
Genetic Operators 254
The Basic GA Recipe 255
Example: Function Maximization 255

The Fitness Landscape 256
How Do GAs Work? 258

The Building-Block Hypothesis 259
Dueling Parasites 260

Appendix C: Source Code for ISAAC 263
Header File 263
Structures 264
Main Module 272
Function Modules 299

Appendix D: Source Code for ISAAC_GA 303

xviii

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Header File 303
Structures 303
Main Module 308

Appendix E: STATS_X.dat Data Fields 335
STATS_l.dat 335
STATS_2.dat 335
STATS_3.dat 336
STATS_4.dat 336
STATS_5.dat 336
STATS_6.dat 337
STATS_7.dat 337
STATS_8.dat 338
STATS_9.dat 338
STATS_10.dat .338
STATS_ll.dat 339
STATS_12.dat 340
STATS_13.dat 340
STATS_14.dat 341
STATS_15.dat 342
STATS_16.dat 342
STATS_17.dat 343
STATS_18.dat 344
STATS_19.dat 345
STATS_20.dat 346
STATS_21.dat 347

Appendix F: Ouster Counting Algorithm 349
Heuristic Recipe 349
Source Code 351

Appendix G: Sample Input Data Files 355
Sample Data Input File for ISAAC_CE: ISAAC.dat 355
Sample Data Input Files for ISAAC_GA 359

GA_ISAAC.dat 359
GA_DATA.dat 362

Sample Data Input File for ISAAC_PM: PHASE.dat 364

References 365

List of Figures 371

List of Tables 375

XIX

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Introduction
This study is a follow-on effort to a recently completed project,
sponsored by the Commanding General, Marine Corps Combat
Development Command (MCCDC), that assessed the general
applicability of the "new sciences" to land warfare. "New sciences" is a
catch-all phrase that refers to the tools and methodologies used in
nonlinear dynamics and complex systems theory to study physical
dynamical systems that exhibit a "complicated dynamics."

The final reports ([1] and [2]) for that assessment provide a
broad-brush overview of the applicability of nonlinear dynamics and
complex systems theory to land warfare. Reference [1] is a general
technical source book of information on the key ideas, concepts and
methodologies of nonlinear dynamics and complex systems theory, and
contains an extensive glossary of terms. Reference [2] discusses specific
"new sciences" ideas that can potentially add insight into our
conventional understanding of land warfare.

The central thesis of both these reports is that land combat can be
thought of as a complex adaptive system. That is to say, land combat is a
nonlinear dynamical system composed of many interacting
semi-autonomous and hierarchically organized agents continuously
adapting to a changing environment.

Military conflicts, particularly land combat, have all of the key features
of complex adaptive systems (see table 1): combat forces are composed
of large numbers of nonlinearly interacting parts and are organized in a
command and control hierarchy; local action, which often appears
disordered, induces long-range order (i.e., combat is self-organized);
military conflicts, by their nature, proceed far from equilibrium;
military forces, in order to survive, must continually adapt to a changing
combat environment; there is no master "voice" that dictates the actions
of each and every combatant (i.e., battlefield action effectively proceeds
according to a decentralized control); and so on. This means that, in
principle, land combat ought to be amenable to precisely the same
methodological course of study as any other complex adaptive system,
such as the stock market, a natural ecology, or the human brain.

Implicit in this central thesis is the idea that these largely conceptual
links between properties of land warfare and properties of complex
systems in general can be extended to forge a set of practical
connections as well. Land warfare does not just look like a complex
system on paper, but can well be characterized in practice using the
same basic principles that are used for discovering and identifying
behaviors in complex systems.

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

The program described in this report, called ISAAC, is a multiagent-
based simulation of notional combat (an early version of which is
described in [7]). ISAAC represents a first step toward developing a
complex systems theoretic analyst's toolbox for identifying, exploring,
and possibly exploiting emergent collective patterns of behavior on the
real battlefield.

Table 1. Land combat as a complex adaptive system

Background

General Property of
Complex Systems

Description of Relevance to
Land Combat

Nonlinear interaction
Combat forces composed of a large number of
nonlinearly interacting parts; sources include feedback
loops in C2 hierarchy, interpretation of (and adaptation
to) enemy actions, decision-making process, and
elements of chance

Nonreductionist
The fighting ability" of a combat force cannot be
understood as a simple aggregate function of the
fighting ability of individual combatants

Emergent Behavior The global patterns of behavior on the combat
battlefield unfold, or emerge, out of nested sequences of
local interaction rules and doctrine

Hierarchical structure Combat forces are typically organized in a command and
control (fractal-like) hierarchy

Decentralized control There is no master "oracle" dictating the actions of each
and every combatant; the course of a battle is ultimately
dictated by local decisions made by each combatant

Self-organization Local action, which often appears "chaotic," induces
long-range order

Nonequilibrium order Military conflicts, by their nature, proceed far from
equilibrium; understanding how combat unfolds is more
important that knowing the "end state"

Adaptation
In order to survive, combat forces must continually adapt
to a changing environment, and continually look for
better ways of adapting to the adaptation pattern of their
enemy

Collectivist dynamics
There is a continual feedback between the behavior of
(low-level) combatants and the (high-level) command
structure

Reference [2] introduces a convenient eight-tier scaffolding on which
to organize potential applications of nonlinear dynamics and complex
systems theory to land warfare. This scaffolding includes applications
that range roughly from those (on Tier I) that involve the least risk but
are likely to incur the least payoff, to those (on Tier VIII) that involve
the greatest risk but are also likely to incur the greatest potential payoff
(see table 2):!

1 See http://www.marine-ns.cots-q.com/second~l/nsappl~l/eightt~l/eightt.htm.

2

irreducible 5emi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• Tier I: General Metaphors for Complexity in War

• Tier II: Policy and General Guidelines for Strategy

• Tier HI: Conventional Warfare Models and Approaches

• Tier IV: Description of the Complexity of Combat

• Tier V: Combat Technology Enhancement

• Tier VI: Combat Aids for the Battlefield

• Tier VQ: Synthetic Combat Environments

• Tier "VTA: Original Conceptualizations of Combat.

For many obvious reasons, the most natural application of complexity
theory to land warfare is to provide an agent-based simulation of combat.
That is to say, a Tier-VII application that attempts to model land combat
as a co-evolving ecology of local-rule-based autonomous adaptive agents
(see shaded box in table 2).

Agent-based simulations of complex adaptive systems are predicated on
the idea that the global behavior of a complex system derives entirely
from the low-level interactions among its constituent agents. By relating
an individual constituent of a complex adaptive system to an agent, one
can simulate a real system by an artificial world populated by interacting
processes. Agent-based simulations are particularly adept at
representing real-world systems composed of individuals that have a
large space of complex decisions and/or behaviors to choose from.

Motivation

It is a bit ironic that in this modern age of distributed interactive
simulations and gigabyte-sized code driving networked 3D virtual-reality
systems with embedded artificial intelligence, the underlying principles
of combat attrition calculations in land warfare models remain largely
unchanged since the turn of the century. Most attrition models still
depend on some form of Lanchester's equations (see below), even in
contexts that are wholly inappropriate for their use.

This study was motivated by two fundamental insights:

1. The fundamental principles underlying modern land warfare -
with its general emphasis on maneuver and adaptation - cannot
be elucidated from the (reductionist-style) analysis of force-on-force
attrition alone.

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

2. The main lesson from complex systems theory - namely, that
local nonlinear interaction of many "simple parts" often results
in "apparently complex" emergent behavior - can be used to
develop a radically new synthesist approach to understanding the
fundamental processes of war.

ISAAC was designed to take a new look at a very old problem by
exploiting what the "new sciences" have taught us about how global
patterns often emerge from the collective behaviors of individuals. What
higher-level phenomena might emerge on the real battlefield out of the collective
interactions among individual combatants'?

Table 2. Eight tiers of a pplicability
Tier of Applicability Description Examples

Build and continue to expand nonlinear vice linear
/. General Metaphors for base of images to enhance synthesist vice analytical

Complexity in War conceptual links between edge-of-chaos vice equilibrium
complexity and warfare process vice structure

holistic vice reductionist

Guide formulation of policy Use general metaphors and
II. Policy and and apply basic principles and lessons learned from CST to

General Guidelines metaphors of CST1 to enhance guide and shape policy
for Strategy and/or alter organizational making;

structure Use genetic algorithms to
evolve new organizational

forms

III. "Conventional" Warfare Apply tools and methodologies chaos in Lanchester equations
Models and Approaches of CST to better understand chaos in arms-race models

and/or extend existing models analogy with ecological models

IV. Description of the Describe real-world combat power-law scaling
Complexity of Combat from a CST perspective Lyapunov exponents

entropic parameters

Apply tools and methodologies intelligent manufacturing
V. Combat Technology of CST to certain limited data compression

Enhancement aspects of combat, such as cryptography
intelligent manufacturing, IFF

cryptography and data computer viruses
dissemination fire ants

Use CST tools to enhance autonomous robotic devices
VI. Combat Aids real-world combat operations tactical picture agents

tactics/strategy evolution via
GA

VII. Synthetic Combat Full system models for training agent-based models {SimCity)
Environments and/or to use as research Soar/IFOR

"laboratories" SWARM

VIII. Original Use CST-inspired basic pattern recognition
Conceptualizations research to develop controlling/exploiting Chaos

of Combat fundamentally new
conceptualizations of combat

Universality?

CST = Complex Systems Theory

4

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Lanchester equations

In 1914, F. W. Lanchester [3] introduced a set of coupled ordinary
differential equations - now commonly called the Lanchester Equations
(LEs) - as models of attrition in modern warfare.2 These equations have
since venerably served as the fundamental models upon which most
modern theories of combat attrition are based. For the simplest case of
directed fire, for example, Lanchester hypothesized that one side's
casualty rate is proportional to the number of the opposing side's unit
strength.

In mathematical terms, let R(t) and B(t) represent the numerical
strengths of the red and blue forces at time t, respectively, and o^ and CCB

represent the constant effective firing rates at which one unit of
strength on one side causes attrition of the other side's forces. Then
Lanchester's well known directed fire (or square law) model of attrition is
given by

ft=-aBB{t), B10) = RQ

ft=-aRR(t), B(0) = BQ '

where R,, and B0 are the initial red and blue force levels, respectively.
The closed form solution of these equations is given in terms of
hyperbolic functions as

B(t) = i?ocosh yaBaRt J-B0 JaB/aR sinh UaBaRt J

B(t) = £0cosh yaBaRt J-RQ JaB/aR sinh UaBaRt J

and satisfies the simple "square-law" state equation

aR[l$-W)2] = aB[B2
0-B(t)2].

Despite the simplicity of this equation (which can be found embedded
in many large-scale combat models), almost all attempts to correlate
LE-based models with historical combat data have proven inconclusive,
a result that is in no small part due to the paucity of data. Most data
consist only of initial force levels and casualties, and typically for one
side only. Moreover, the actual number of casualties is usually uncertain
because the definition of "casualty" varies (killed, killed + wounded,
killed + missing, etc).

Two noteworthy battles for which detailed daily attrition data and daily
force levels do exist are the battle of Iwo Jima in World War II and
Inchon-Seoul campaign in the Korean War. While the battle of Iwo Jima

2 Similar ideas were proposed around that time by Chase [4] and Osipov [5].

5

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

is frequently cited as evidence for the efficacy of the classic LEs, it must
be remembered that the conditions under which it was fought were very
close to the ideal list of assumptions under which the LEs themselves
are derived. A detailed analysis of the Inchon-Seoul campaign [8] has
also proved inconclusive. Weiss [9], Fain [10] and others describe
analyses of battles fought from 200 B.C. to World War II.

While LEs capture some important basic elements of combat, they apply
only under a very strict set of assumptions. These assumptions include
having homogeneous forces that are continually engaged in combat,
firing rates that are independent of opposing force levels and are
constant in time, and units that are always aware of the position and
condition of all opposing units, among many others. Because
Lanchester's direct-fire equations assume that each side has perfect
information about where the opposing side's forces are located and
what opposing force units have been hit, they are models of highly
organized combat with complete and instantaneous information.

Figure 1. The force-on-force attrition "challenge"

Lane •hester Equations Or...

f—^C
Is

(.Blue

BU)

V . (lied)

«R

There
Another

Approach
f dR
1 „, = -aBB(t), R(0) = R0

•
1 dB = -fxRR(0. Bf0j = B()

LEs suffer from other fundamental shortcomings, including modeling
combat as a deterministic process, requiring knowledge of
"attrition-rate coefficients" (the values of which are, in practice, very
difficult if not impossible to obtain), an inability to account for any
suppressive effects of weapons, an inability to account for terrain effects,
and the inability to account for any spatial variation of forces. Generally
speaking, Lanchester's equations simply lack the spatial
degrees-of-freedom needed to model real-world combat. More
important, they also leave out the all-important human factor; i.e., the
psychological and/or decision-making capability of the human
operator.

When these shortcomings are coupled with the Marine Corps'
Maneuver-Warfare land combat doctrine - which is fundamentally based

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

on the art of maneuver and adaptation vice pure force-on-force attrition
[11] - the use of a purely force-on-force-driven analytical methodology
to describe modern combat begins not just to strain credibility, but to
literally smack of an oxymoron. The question is, "Is there anything better?"
Is there a way, perhaps that bucks the conventional way of representing
land combat? See figure 1.

While there have been many extensions to and generalizations of
Lanchester's equations over the years - including their reformulations
as stochastic differential equations and partial differential equations
designed to minimize the inherent deficiencies - very little has really
changed in the way we fundamentally view and model combat attrition.
However, recent developments in nonlinear dynamics and complex
systems theory - particularly those in an emerging new field called
artificial life (see below) - provide a potentially powerful new set of
theoretical and practical tools to address many of the deficiencies
mentioned above. These developments provide a fundamentally new
way of looking at land combat.

Artificial Life

Artificial Life (AL), introduced in the quote that appears on the first
page of this report by Chris Langten,3 is an attempt to understand life as
it is by examining a larger context of life as it could be. The underlying
supposition is that life owes at least as much to its existence to the way
in which information is organized as it does to the physical substance
(i.e., matter) that embodies that information. Similarly, ISAAC is
designed to be a tool that can help us understand combat as it is by
allowing analysts to explore a larger context of combat as it could be.

The fundamental concept of AL is emergence, or the appearance of
higher-level properties and behaviors of a system that - while obviously
originating from the collective dynamics of that system's components -
are neither to be found in nor are directly deducible from the
lower-level properties of that system. Emergent properties are
properties of the "whole" that are not possessed by any of the individual
parts making up that whole: an air molecule is not a tornado and a
neuron is not conscious.

AL thus studies life by using artificial components (such as computer
programs) to capture the behavioral essence of living systems. The
supposition is that if the artificial parts are organized correctly, in a way
that respects the organization of the living system, then the artificial
system will exhibit the same characteristic dynamical behavior as the
natural system on higher levels as well. Notice that this bottom-up,
synthesist approach stands in marked contrast to more conventional
top-down, analytical approaches.

3 Chris Langton organized the first international conference on AL in 1987 [12]
and is currently among AL's conceptual leaders.

7

^reducible Stemi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

AL-based computer simulations are characterized by these five general
properties [12]:

1. They are defined by populations of simple programs or
instructions about how individual parts all interact.

2. There is no single "master oracle" program that directs the
action of all other programs.

3. Each program defines how simple entities respond to their
environment locally.

4. There are no rules that direct the global behavior.

5. Behaviors on levels higher than individual programs are
emergent.

Figure 2. Artificial Life: a new approach to the classic force-on-force
attrition problem?

Force-on-force attrition
Goals, local interactions, motivations,

personality, adaptation,...

aB '■^L !^to||

(ßlue

Bft) ^

BBBBB m

■ 1 -'S"'- BB a T a W

aaasa a aiaaa w
• ■« ■■ ^ ".in r a a a a m BIBBB ■ NT a a ■ a« >

a ^. a BB J_B _5i»
. ■■■'■ ■ aa "■" ■■■■

y"dR

V
= -aBB(U RiO) = R„

a
BB -.■■

■IB" ^^«*^

1 dB
V. dt

= -aRR(t). B(0) = B0

Figure 2 shows, schematically, the form of an artificial-life-based
"solution" to the force-on-force attrition challenge posed in figure 1.
The eye in figure 2 symbolizes the importance of emergence in AL
models, and therefore the need for pattern recognition.

Fundamentally, the AL-based approach represents a shift in focus from
"hard-wiring" into a model a sufficient number of (both low- and
high-level) details of a system to yield a desired set of "realistic"
behaviors - the rallying cry of such models being "more detail, more detail,
we need more detail!"

8

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

to.

Looking for universal patterns of high-level behavior that naturally and
spontaneously emerge from an underlying set of low-level interactions
and constraints - the rallying cry in this case being "allow evolving global
patterns to emerge on their own from the local rules!"

Decentralized Self-Organization

A basic property of many complex systems is decentralized self-organization.
Not every pattern must be centrally orchestrated. In fact, decentralized
systems, whose components do not simply follow rules that are passed
down echelon from some higher "authority" possessed of a more global
perspective (and instead assimilate and react only to local information),
often display a self-organized order on the macro-scale.

To motivate the discussion of ISAAC, we present three simple examples
of decentralized self-organization: (1) the space-time patterns of
cellular automata, (2) the flocking of birds, and (3) a collective sorting
program based on the foraging patterns of ants. Other examples
include the colorful dynamical spirals of the Belousov-Zhabotinski
chemical reaction, the functioning of the human immune system, and
patterns of traffic flow that arise from purely local interactions among
individual cars (see [1]). The program that is the subject of this report,
ISAAC, was essentially developed to address this basic question: "To
what extent is combat a self-organized emergent phenomenon ?"

Cellular Automata

One-dimensional cellular automata are simple discrete dynamical
systems consisting of a single "line" of cells.4 Each cell has a "value"
(either one or zero) that changes in discrete time steps depending on
what that cell's value was on the previous time step and what values that
given cell's left- and right-neighbors had on the previous time step. A
cellular automata rule is an explicit prescription of this functional
dependency. A space-time diagram for this rule consists of stacking the
entire row of cells at successive time steps on top of one another (with
the color black representing cell value 1, and the color white
representing cell value 0).

To illustrate how even "simple rules" acting on the micro-scale can give
rise to "complicated dynamics" on the macro-scale, consider the
one-dimensional cellular automaton rule defined at the top of figure 3.
Its space-time evolution, starting from a random initial state, is shown at
the bottom of the figure. Note that this space-time pattern can be
described on two different levels: either on the cell-level, by explicitly
reading off the values of the individual cells, or on a higher-level by

4 A short primer on cellular automata is given in Appendix A.

9

/rreducible ^emi-4utonomous adaptive £bmbat (ISAAC): An Artificial-Life Approach to Land Warfare

describing it as a sea of particle-like structures superimposed on a
periodic background. In fact, following a small initial transient period,
temporal sections of this space-time pattern are always of the form
"...BBBBPBB...BB... BBBP'BB...BBBP"BBB...", where "B" is a state of the
periodic background consisting of repetitions of the sequence
"10011011111000" (with spatial period 14 and temporal period 7), and
the P's represent "particles." The particle pattern P = "11111000", for
example, repeats every four steps while being displaced two cells to the
left; the particle P = "11101011000" repeats every ten steps while being
displaced two cells to the right.

Figure 3. Evolution of a one-dimensional CA starting from a random
initial state

■ : c-1 n : c=0

mm n wrm ■ i i np i ■ i i ^m 4^
Rule

time
space - ►

üäiülss
lliiili P§j§f||j

Wm&mim
BHiäH9K«!33tt-9s3£ä

|S338ä3!ä$§§33

Ui
■

Although the underlying dynamics describing this system is very simple,
and entirely deterministic, there is an enormous variety, and
complexity, of emergent particle-particle interactions. Such simple
systems are powerful reminders that complex higher-level dynamics
need not have a complex underlying origin. Indeed, suppose that we
had been shown such a space-time pattern but were told nothing
whatsoever about its origin. How would we make sense of its dynamics?
Perhaps the only reasonable course of action would be to follow the
lead of any good experimental particle-physicist and begin cataloging
the various possible particle states and interactions: there are N particles of
size s moving to the left with speed v, when a particle p of type P collides with q of
type Q, the result is the set of particles {pp ..., pj; and so on. It would take a
tremendous leap of intuition to fathom the utter simplicity of the real
dynamics.

10

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An ArtificialrLife Approach to Land Warfare

"Boids"

One of the most breathtakingly beautiful displays of nature is the
synchronous, fluid-like flocking of birds. It is also an excellent example
of emergence in complex systems. Large or small, the magic of flocks is
the very strong impression they convey of some intentional centralized
control directing the overall traffic. Though ornithologists still do not
have a complete explanation for this phenomenon, evidence strongly
suggests that flocking is a decentralized activity, where each bird acts
according to its local perceptions of what nearby birds are doing.
Flocking is therefore a group behavior that emerges from collective
action.

Craig Reynolds [13] programmed a set of artificial birds — which he
called boids — to follow three simple local rules:

• Rule 1: maintain a minimum distance from other objects
(including other boids)

• Rule 2: match the velocity of nearby boids

• Rule 3: move toward the perceived center of nearby boids.

Each boid thus "sees" only what its neighbors are doing and acts
accordingly. Reynolds found that the collective motion of all the boids
was remarkably close to real flocking, despite the fact that there is
nothing explicitly describing the flock as a whole. The boids initially
move rapidly together to form a flock. The boids at the edges either
slow down or speed up to maintain the flock's integrity. If the path
bends or zigzags in any way, the boids all make whatever minute
adjustments need to be made to maintain the group structure. If the
path is strewn with obstacles, the boids flock around whatever is in their
way naturally, sometimes temporarily splitting up to pass an obstacle
before reassembling beyond it. There is no central command that
dictates this action.

Reynolds' Boids is a good example of decentralized order not because
the boids' behavior is a perfect replica of the flocking of birds that
occurs in nature — although it is a close enough match that Reynold's
model has attracted the attention of professional ornithologists — but
that much of the boids' collective behavior is entirely unanticipated,
and cannot be easily derived from the rules defining what each
individual boid does.

In the same way, the boid-like program described in this paper can be
used to show that certain aspects of land combat can be viewed as
emergent phenomena resulting from the collective, nonlinear,
decentralized interactions among elementary "combatants."

11

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Collective Sorting

Deneubourg, et al. [14], have introduced a simple distributed sorting
algorithm that is inspired by the self-organized way in which ant
colonies sort their brood.

Implemented by robot teams, their algorithm has the robots move
about a fenced-in environment that is randomly littered with objects
that can be scooped up. These robots (1) move randomly, (2) do not
communicate with each other, (3) can perceive only those objects
directly in front of them (but can distinguish between two or more
types of objects with some degree of error), and (4) do not obey any
centralized control. The probability that a robot picks up or puts down
an object is a function of the number of the same objects that it has
encountered in the past.

Coordinated by the positive feedback these simple rules induce between
robots and their environment, the result, over time, is a seemingly
intelligent, coordinated sorting activity. Clusters of randomly
distributed objects spontaneously and quite naturally emerge out of a
simple set of autonomous local actions having nothing at all to do with
clustering per se; see figure 4.

Figure 4. Collective sorting by ant-like robots

•^"V." •.Wv-"-V-.\r"!£:-.'.' :"' ''V••"•

r.'-... .#'*s *.?••• ?••.;■

* - .*.■•' . J>
*•'"'

*'< *." •ft'
••

.«!•• 'a* •fit-. ■*.
-■«'.

••!••*■

W-

-— ."?*• •' •i ■•* ■#■ .** •' ft
%'•'-. >•

,'* -.k
';.' *•■ • Vj. *■ r *-v

i» - .

The authors suggest that this system's simplicity, flexibility, error
tolerance, and reliability compensate for their lower efficiency. While
one can argue that this collective sorting algorithm is much less
efficient than a hierarchical one, the cost of having a hierarchy is that
the sorting would no longer be ant-like but would require a god-like
oracle analyzing how many objects of what type are where, deciding
how best to communicate strategy to the ants. Furthermore, the ants
would require some sort of internal map, a rudimentary intelligence to
deal with fluctuations and surprises in the environment (what if an
object was not where the oracle said it would be?), and so on. In short, a
hierarchy, while potentially more efficient, would of necessity have to be
considerably more complex as well. The point Deneubourg, et al. are
making is that a much simpler collective decentralized system can lead
to seemingly intelligent behavior while being more flexible, more
tolerant of errors, and more reliable than a hierarchical system.

12

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Agent-Based Models

Agent-based simulations of complex adaptive systems are predicated on
the idea that the global behavior of a complex system derives entirely
from the low-level interactions among its constituent agents. Lessons
about the real-world system that an agent-based simulation is designed
to model can be learned by looking at the emergent structures induced
by the interaction processes taking place within the simulation.

The purpose behind building agent-based simulations is twofold: it is to
learn both the quantitative and qualitative properties of the real system.
Agent-based simulations are well suited for testing hypotheses about the
origin of observed emergent properties in a system. This can be done
simply by experimenting with sets of initial conditions at the micro-level
necessary to yield a set of desired behaviors at the macro-level. On the
other hand, they also provide a powerful framework within which to
integrate ostensibly "disjointed" theories from various related
disciplines. For example, while basic agent-agent interactions may be
described by simple physics and sociology, the internal decision-making
capability of a single agent may be derived, in part, from an
understanding of cognitive psychology.

The fundamental building block of most models of complex adaptive
systems is the so-called adaptive autonomous agent. Adaptive
autonomous agents try to satisfy a set of goals (which may be either
fixed or time-dependent) in an unpredictable and changing
environment. These agents are "adaptive" in the sense that they can use
their experience to continually improve their ability to deal with
shifting goals and motivations. They are "autonomous" in that they
operate completely autonomously, and do not need to obey instructions
issued by a God-like oracle.

Depending on the system being modeled and the environment that an
agent populates, an adaptive autonomous agent can take on many
different forms. In Deneubourg et al.'s [14] study of decentralized
collective sorting, for example, the agents of the system are simple
(norzadaptive) robots that move about their physical environment and
make elementary decisions about whether to pick up or drop an object.
Examples of adaptive agents populating "cyberspace" are the so-called
"software agents" (or "knobots") that are entities that navigate computer
networks or cruise the World-Wide-Web searching for relevant bits of
data-

in general, an adaptive autonomous agent is characterized by the
following properties:

• It is an entity that, by sensing and acting upon its environment,
tries to fulfill a set of goals in a complex, dynamic environment.

13

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• It can sense the environment through its sensors and act on the
environment through its actuators.

• It has an internal information processing and decision-making
capability.

• Its anticipation of future states and possibilities, based on
internal models (which are often incomplete and/or incorrect),
often significantly alters the aggregate behavior of the system of
which an agent is part.

• An agent's goals can take on diverse forms:

• Desired local states

• Desired end goals

• Selective rewards to be maximized

• Internal needs (or motivations) that need to be kept within
desired bounds.

Since a major component of an agent's environment consists of other
agents, agents generally spend a great deal of their time adapting to the
adaptation patterns of other agents. The adaptive mechanism of an
adaptive autonomous agent is typically based on a genetic algorithm.5

Insofar as complex adaptive systems can be regarded as being essentially
open-ended problem-solvers, their lifeblood consists mostly of novelty.
The ability of a complex adaptive system to survive and evolve in a
constantly changing environment is determined by its ability to
continually find — either by chance, or experience, or more typically
both — insightful new strategies to increase its overall "fitness" (which is,
of course, a constantly changing function in time).

Military campaigns likewise depend on the creative leadership of their
commanders, success or failure often hinging either on the brilliant
tactic conceived in the heat of combat or the mediocre one issued in its
place.

To be realistic, such novelty must not consist solely of a randomly
selected option from a main-options list (a common approach taken by
conventional warfare models), but must at least have the possibility of
being as genuinely unanticipated in the model as it often is on a real
battlefield. To this end, each command-agent (and to a somewhat more
limited extent, each primitive agent) must possess both a memory and
an internal anticipatory mechanism that it uses to select the optimal
tactic and/or strategy from among a set of predicted outcomes. This is
an important point: except for doctrine and the historical lessons of
warfare, the super-set of tactics must not be hard-wired in.

3 A primer on genetic algorithms is given in Appendix B.

14

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Such local-rule-based multiagent simulations are well suited for:

• Providing a theoretical framework for understanding aggregate
behavior as fundamentally nonlinear and synergistic

• Studying the general efficacy of combat doctrine and tactics

• Exploring emergent properties and/or other "novel" behaviors
arising from low-level rules (even doctrine if it is well encoded6)

• Capturing universal patterns of combat behavior by focusing on
a reduced set of critical drivers

• Suggesting likelihood of possible outcomes as a function of
initial conditions

• Use as training tools along the lines of some commercially
available agent-based "games," such as SimCity, SimFarm, and
SirnLife1

• Providing near-real-time tactical decision aids by providing a
"natural selection" (via genetic algorithm) of superior tactics
and/or strategies for a given combat situation

• Providing a natural arena in which to explore consequences of
various qualitative characteristics of combat (unit cohesion,
morale, leadership, etc.)

• Giving an intuitive "feel" for how and/or why unanticipated
events occur on the battlefield, and to what extent the overall
process is shaped by such events.

Ideally, one would hope to find universal patterns of behavior and/or
tactics and strategies that are independent of the details of the make up
of individual combat agents.

Agent-based simulations ought not be used either to predict real
battlefield outcomes or to provide a realistic simulation of combat.
While commercial networkable 3D virtual-reality games such as Quake8

are much better suited to providing a virtual combat environment for
training purposes, agent-based simulations are designed to help
understand the basic processes that take place on the battiefield. It is
not realism, for its own sake, that agent-based simulations are after, but

6 It is an intriguing speculation that doctrine as a whole may contain both desirable
and undesirable latent patterns that emerge only when allowed to "flow" through a
system of elementary agents. An agent-based model of combat may provide an ideal
simulation environment in which to explore such possibilities.
7 W. Wright, SimCity (computer game), Orinda, California: Maxis Corporation,
1989.
8 Id Software, World-Wide Web URL link = http://www.idsoftware.com.

15

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

rather a realistic understanding of the drivers (read: interactivity,
decision-making capability, adaptability, and so on) behind what is
really happening.

Recent Examples of Agent-Based Simulations

As fundamental research on complex systems grows, and its set of
associated theoretical and/or exploratory tools is refined, the use of
agent-based simulations can only become more widespread. Some of
the more recent examples of agent-based simulations include Chris
Barrett's TRANSIM model of traffic flow [15] (in which Albuquerque's
road-traffic network is meticulously reproduced, boulevard by
boulevard, and the simultaneous actions of many agent-drivers are used
to explore countless "What iß" scenarios) and Epstein and Axtell's
Sugarscape model of the evolution of social systems [16] (in which
cultural evolution is studied by observing the collective behavior of
many interactive agents, each endowed with a notional set of social
interaction rules). Much attention has also been recently focused on
developing intelligent software agents to help assimilate the
exponentially growing information on the World-Wide-Web (see, for
example, Maes [17]).

SWARM, Santa Fe Institute's SWARM project, headed by Chris
Langton,9 is a multiagent meta-simulation platform for the study of
complex adaptive systems. The goal of the project is to provide the
research community with a general-purpose artificial-life simulator. The
system comes with a variety of generic artificial worlds populated with
generic agents, a large library of design and analysis tools, and a
"kernel" to drive the actual simulation. These artificial worlds can vary
widely, from simple 2D worlds in which elementary agents move back
and forth, to complex multidimensional "graphs" representing
multidimensional telecommunication networks in which agents can
trade messages and commodities, to models of real-world ecologies.

As SWARM was only in the initial stages of beta-testing at the
conception of this project, ISAAC was coded in the C programming
language to reduce development time. As the list of SWARM features
continues to increase, however, and as SWARM itself matures as a
bona-fide research vehicle, future versions of ISAAC may be written for
SWARM. Ultimately, ISAAC may become a full fledged "combat
programming language" (i.e., a Mathematical for combat).

Agent-Based Simulations vs. Traditional Modeling Approaches

Fundamentally, an agent-based approach to modeling complex systems
differs from more traditional differential-equation based approaches in

9 World-Wide-Web URL link = http://www.santafe.edu/prqjects/swarm/.
10 World-Wide-Web URL link = http://www.wri.com.

16

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

that it represents a shift from force-on-force attrition calculations to
considering how high-level properties and behaviors of a systems
emerge out of low-level rules. The conceptual focus of agent-based
models shifts from finding a mathematical description of an entire
system to a low-level rule-based specification of the behavior of the
individual agents making up that system.

Table 3 compares the traditional reductionist approach to modeling
complex systems with complex adaptive system/agent-based
simulations.

Table 3. Comparison between traditional and agent-based approaches
to complex systems modeling

Traditional (Reductionist)
Approach

Agent-Based Simulation

degrees-of-freedom relatively few typically many

interactions
typically weak and linear; need to

be hard-wired into model
usually strong and nonlinear;

low-level agents continually adapt
to a changing environment

characteristic length and
time scales

=1 >>1

specification of complex
boundary conditions

can be difficult to specify
analytically (say, as part of a partial

differential equation model)
very easy to implement

model of individual
combatant?

necessarily crude; assumes that all
combatants are the same

more realistic; each combatant has
its own unique history and

therefore its own unique way of
responding to the world

aggregation of variables simpleminded aggregation of
low-level variables

sets of high-level variables are
self-organized and emergent;

aggregate behavior is
fundamentally nonlinear and

synergistic

long term behavior solve for steady-state equilibrium
solution

nonequilibrium behavior is more
descriptive of long-term dynamics

sought-f or behavior
is either accounted for explicitly or

is typically absent; focuses on
force-on-force attrition ratios

high-level behavior (not accounted
for directly) emerges naturally from
low-level rules; focuses more on the

overall attrition process

Agent-Based Simulations vs. Traditional Artificial Intelligence

"It is hard to point at a single component [of an AI program] as the seat of intelligence,
there is no homunculus. Rather, intelligence emerges from the interactions of the
components of the system. The way in which it emerges, however, is quite different for
traditional and behavior-based AI systems." [18]

At first sight, the kinds of problems best suited for agent-based
simulations appear to be similar to the kinds of problems for which

17

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

traditional artificial intelligence (AI) techniques have been developed.
How is an agent-based simulation different from a traditional artificial
intelligence approach? Maes [19] lists four key points that distinguish
traditional AI from the study of adaptive autonomous agents:

1. Traditional AI focuses on systems exhibiting isolated
"high-level" competencies, such as medical diagnoses, chess
playing, and so on; in contrast, agent-based systems target
lower-level competencies, with high-level competencies
emerging naturally, and collectively, of their own accord.

2. Traditional AI has focused on "closed systems" in which the
interaction between the problem domain and the external
environment is kept to a minimum; in contrast, agent-based
systems are "open systems," and agents are directly coupled with
their environment.

3. Most traditional AI systems deal with problems in a piecemeal
fashion, one at a time; in contrast, the individual agents in an
agent-based system must deal with many conflicting goals
simultaneously.

4. Traditional AI focuses on "knowledge structures" that model
aspects of their domain of expertise; in contrast, an agent-based
system is more concerned with dynamic "behavior producing"
modules. It is less important for an agent to be able to address a
specific question within its problem domain (as it is for
traditional AI systems) than it is to be flexible enough to adapt
to shifting domains.

18

Irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Overview of ISAAC

What is ISAAC?

ISAAC is an acronym for Irreducible Semi-Autonomous Adaptive
Combat, and represents (in its current form) a skeletal agent-based
model of combat." ISAAC'S discrete, local-rule-based nonlinear
dynamics is patterned loosely after two-dimensional cellular automata
rules, with one major difference. In contrast to cellular automata
models,12 in which it is typically information that moves throughout the
lattice with the sites themselves remaining fixed, ISAAC allows certain
privileged kinds of sites (to be described below) to move throughout
the lattice and to carry information with them. For that reason, ISAAC
can be thought of as a mobile cellular automata model.

Mobile cellular automata have been used before to model
predator-prey interactions in natural ecologies [20 through 22]. They
have also been applied to combat modeling [23], but in a much more
limited fashion than the one ultimately envisioned for ISAAC. The goal
is for ISAAC to become a fully developed complex systems theoretic
analyst's toolbox for identifying, exploring, and possibly exploiting
emergent collective patterns of behavior on the battlefield.

ISAAC currently consists of four separate programs (see table 4): an
interactive Core Engine that incorporates all of the behavioral and
dynamical features that are described below (ISAAC_CE), a standalone
Genetic Algorithm Evolver13 that uses a slightly older version of ISAAC to
evolve force characteristics that are "best-fit" for performing user-defined
missions (ISAAC_GA), a single-squad version of the core engine that
can be used to run and display data files generated by ISAAC_GA
(ISAAC_SQ), and a Parameter-Space Mapper that also uses a slightly older
version of ISAAC to map out the behavior of a system over a
two-dimensional "slice" of ISAAC'S total N-dimensional phase space
(ISAAC_PM). Each of these programs will be described in detail in the
following sections. The accompanying diskette also contains the
program ISAAC_PB that can be used to "play-back" the recorded runs
described in the Sample Runs section. A user's guide for ISAAC_GA
appears in the section Genetic Algorithm Evolutions of ISAACA
Personalities. ISAAC_PM is discussed in Taking 2D "Slices" of ISAAC'S
Parameter Space in the Data Collection section.

11 Apart from its descriptive value, the acronym ISAAC was chosen to pay
tongue-in-cheek homage to Isaac Newton. It seemed an appropriate choice to make
given that the "new" (complex systems theoretic) sciences represent a fundamental
shift away from linear (or so-called "Newtonian") thinking. Newton was, in fact, well
aware of nonlinearities and their implications.
12 For a brief primer on cellular automata, see appendix A of this report.
13 For a brief primer on genetic algorithms, see appendix B of this report.

19

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Table 4. A listing of program "modules" making up ISAAC

Program Version Decription

ISAAC_CE 1.8.4 Thv iullv interactive (multi-squad version of the)
Cpre Engine that includes all of the features
described in. this CRM

ISAACLSQ 1.7.4

ISAAC_GA 1.5.1

ISAAC PM 1.2.1

ISAAC PB 1.0.1

The single-squad version of the core engine that
can be used to display files gnerated by
ISAAC_GA

A stand-alone Genetic Algorithm Evolver that uses
the core engine to evolve personalities "best-fit" to
perform a specified mission

A stand-alone Parameter-Space Mapper that uses
the core engine to "map-out" the behavior over a
user-defined two-dimensional slice of ISAAC'S
total N-dimensional phase-space

A stand-alone program that can be used to
Play-Back peviously recorded runs; in particular,
all of the *.out files on the distribution diskette

ISAAC can therefore be used in three different run "modes":

• Interactive Mode, in which ISAAC_CE (or ISAAC_SQ) is run

interactively using a fixed set of rules. This mode, which allows

the user to make 'on-the-fly' changes to the values of any (or all)

parameters defining a given run (including the "decision-making

personality" of individual ISAACAs), is particularly well suited for

quickly and easily playing multiple "What iß" scenarios. This

purely graphical run mode is also useful for interactively

"searching" for interesting emergent behavior.

• Data-Collection Mode, in which ISAAC_CE, ISAAC_SQ, or

ISAAC_PM are used to summarize entire runs by sets of various

statistical measures. In particular, ISAAC_PM can be used to

gain insight into what ISAAC'S ostensibly N-dimensional

parameter space looks like (modulo some well-defined mission

"objective") by generating complete behavioral profiles on two

dimensional slices ofthat parameter space.

• GA-"Evolver" Mode, in which ISAAC_GA is used to evolve a

personality for one side that is "best" suited for performing some

well-defined mission against a fixed personality (and force

disposition) for the other. While ISAAC_GA's current design is

itself evolving (its embedded genetic algorithm, for example, is

very simple at this stage and can be improved considerably), it is

20

Irreducible Semi-Autonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

powerful enough to illustrate how programs such as this can
eventually be used to evolve real-world "tactics."

Keep in mind that while ISAAC is already arguably rich in structure and
function, ISAAC is still very much a "work in progress." This report (and
the accompanying programs) should therefore be viewed as preliminary
work only. In particular, many of ISAAC'S basic algorithms, behavioral
rules, command and control structures, and data-collection routines are
all subject to change.

What is an ISAACA?

The basic element of ISAAC is an ISAAC Agent (or ISAACA), which
loosely represents a primitive combat unit (infantryman, tank, transport
vehicle, etc.) that is equipped with the following characteristics:

• A default local-rule set specifying how to act in a generic
environment (i.e., an embedded "doctrine")

• Goals directing behavior ("mission")

• Sensors generating an internal map of environment ("situational
awareness")

• An internal adaptive mechanism to alter behavior and/or rules.

A global rule set determines combat attrition, reconstitution and (in
future versions) reinforcement. ISAAC also contains both local and
global commanders, each with their own command radii, and obeying
an evolving C2 hierarchy of rules.

ISAAC possesses the following general characteristics:

1. All low-level combatants respond to strictly local forms of
information.

2. All local decision-dynamics is decentralized and personality driven;
that is, driven by individual goals and motivations.

3. Local dynamics is adaptivea.no. nonlinear.

4. The generic "template" of decision-making is consistent among
the various levels of decision-making (that range from low-level
ISAACAs to local commanders to global commanders to the
super commander).

21

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

ISAAC is local because each ISAACA senses, reacts, and adapts only to
information existing within a prescribed finite sensor range. It is
decentralized because there is no master "oracle" dictating the actions of
each and every ISAACA. Instead, each ISAACA senses, assimilates, and
reacts to all information individually and without guidance. It is
nonlinear because of the nonlinear nature of the local decision-making
process that each ISAACA uses to choose a "move." It is adaptive because
each ISAACA adaptively changes its default ("doctrinal") rules
according to its local environment at each time step. There is thus a
continual dynamical feedback between the local and global levels. The
manner in which its rules are changed proceeds according to each
ISAACA's personality, or its intrinsic value system. Each of these points is
discussed in more detail below.

ISAAC'S basic approach is similar in spirit to a cellular automaton (CA)
model but augments the conventional CA framework in two ways: (1)
individual units can move through the lattice (recall that in CA, what
moves is the information, not the site), and (2) evolution proceeds not
according to a fixed set of rules, but to a set of rules that adaptively
evolves over time. When the appropriate internal flags are set to make
use of a hierarchical command and control structure, ISAAC differs
from conventional CA models in one additional way: individual states of
cells (or combatants) do not just respond to local information, but are
capable of assimilating nonlocal information (via an embedded C2

topology) and command hierarchy. In future versions, global rule (i.e.,
command) strategies will evolve in time (say, via a genetic algorithm).
In this case, orders pumped down echelon will be based on evolved
strategies played out on possibly imprecise mental maps of local and/or
global commanders. Thus, ISAAC will be an ideal test-bed in which to
explore such questions as "What is the tactical and/or strategic impact of
information?"

Design Philosophy

ISAAC has been developed primarily to address the basic question: "To
what extent is land combat a self-organized emergent phenomenon?" As such, its
intended use is not as a full system-level model of combat but as an
interactive toolbox (or "conceptual playground") in which to explore
high-level emergent behaviors arising from various low-level (i.e.,
individual combatant and squad-level) "interaction rules." The idea
behind ISAAC is not to model in detail a specific piece of hardware
(M16 rifle, M101 105mm howitzer, etc.), but to provide an
understanding of the fundamental behavioral tradeoffs involved among
a large number of notional variables. ISAAC is designed to be an
interactive dynamical arena in which the user can explore various "What
if?" scenarios of the form: "What if blue's sensor range is halved but its fire
power is doubled?", "What if the enemy is a much more 'aggressive' force than

22

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

anticipated?", "What if reinforcements are added to a force whose combat
personalities are 'at odds' with the personality of the existing force'?", etc.

Information Levels

Figure 5 shows a schematic of ISAAC'S hierarchy of information levels.
The details of these levels will be given in appropriate sections that
follow; here, we describe only those basic aspects of these levels that are
relevant for illustrating ISAAC'S overall design philosophy.

Figure 5. Schematic of ISAAC'S hierarchy of information levels

Supreme Command (SC) Level
SC defines each scenario

SC defines global combat parameters
SC specifies "mission objectives"

Global Command (GC) Level
GCs define interaction among subordinate LCs

GCs use "global" (i.e. battlefield-wide) information
GCs' decisions are driven by personality-weights

Local Command (LC) Level
LC:LC interactions

LCs issue "orders" to subordinate ISAACAs
LCs use the combined "information" fields

of their subordinate ISAACAs
LCs' decisions are driven by personality-weights

Individual Combatant Level
ISAACAs respond to purely "local" information
Personality-driven ISAACA: ISAACA interactions

The lowest level of the hierarchy is the level of the individual
combatant, or ISAACA, and consists of all information contained within
the notional battlefield that an individual ISAACA can sense and react
to; namely, friendly and enemy ISAACAs, and proximity to "goals" (see
below) and/or terrain. This lowest level is the one on which the
dynamical interactions between ISAACAs occur.

The next two levels are command levels that consist of information
pertinent to making "decisions" regarding the behavior on lower levels.
Local commanders, for example, assimilate and respond to a "pool" of
mid-level information consisting partly of the information contained
within their own field-of-view (which typically extends beyond that of a
single ISAACA) and partly of the information communicated to them

23

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

by their subordinate ISAACAs. Local commanders use this mid-level
information to adjust the movement vectors of the individual ISAACAs
under their command. Global commanders use global (i.e.,
battlefield-wide) information to issue movement vectors to local
commanders (and, therefore, their subordinate ISAACAs) as well as to
define how the subordinate ISAACAs under the command of one local
commander are to interact with the subordinate ISAACAs under the
command of another local commander.

Finally, the top-level supreme commander represents the interactive
user of the software. The user is responsible for completely defining a
given scenario, fixing the size and features of the notional battlefield,
setting the initial force dispositions, and specifying any auxiliary combat
conditions (such as fratricide, reconstitution, combat termination
conditions, and so on). The supreme commander also defines the
"mission objective" required by the standalone genetic algorithm
(ISAAC_GA) and parameter-space mapper (ISAACA_PM) programs.

Guiding Principles

ISAAC'S design philosophy is grounded upon two guiding principles:
(1) keep all dynamical components and rules as simple as possible, and
(2) treat all forms of information (and the way in which all forms of
information are assimilated) equally, but in a contextually consistent
manner.

The first principle refers to a concerted effort to adhere to a relatively
small set of basic combat and movement rules, and to define those rules
as intuitively as possible. Thus, the power projection rule is essentially
"target and fire upon any enemy ISAACA within a threshold fire range" vice
some other, more complicated (albeit, a possibly more realistic)
prescription. Remember that the idea is to qualitatively probe the
behavioral consequences of the interaction among a large number of
notional variables, not to provide an explicit detailed model of combat.

The second principle refers to the fact that almost all dynamical
"decisions" in ISAAC - whether they are made by individual ISAACAs,
by local or global commanders, or by the user himself (in defining a
scenario's "mission objectives") - are personality driven. That is to say, all
decisions are based on what might loosely be called a "personality" that
attaches greater or lesser degrees of importance to each factor relevant
to making a particular decision. It is in this sense that all forms of
information, on all levels, are treated equally. Because decisions on
different levels necessarily involve different kinds of information - for
example, an individual ISAACA's decision to "stay put" in order to
survive is quite different, and uses a different kind of information, from
a global commander's drive to "get to the enemy flag as quickly as
possible" - one must be careful to use whatever information must be

24

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

used for a decision on a given level in a manner that is appropriate for
that level.

The decision-dynamics taking place on different levels are all mutually
consistent in that each decision-maker (whether it is an individual
ISAACA, a local or global commander) follows the same general
template of probing and responding to his environment. Each decision
really consists of answering the following three basic questions:

• Question 1: What are my immediate and/or long-term goals?

• Question 2: What do I currently sense in (and/or know about) my
environment?

• Question 3: How can I use what I currently know of my environment to
attain my goals?

As we shall see in detail below, an individual ISAACA cares only about
"moving toward" or "moving away from" all other ISAACAs and/or his
own and the enemy's flag. An ISAACA's personality prescribes how
much relative weight is assigned to each of these immediate "goals." On
the other hand, a global commander must weigh such factors as overall
force strength, casualty rate, rate of advance, and so on in order to
attain certain long-term goals. Local and supreme commanders have
their own unique concerns. While the actual decisions are different in
each case and on each level, the general template of how those
decisions are made has been designed to be essentially the same.

Combat Battlefield

The putative "combat battlefield" is represented in ISAAC by a
two-dimensional lattice of discrete sites. Each site of the lattice may be
occupied by one of two kinds of ISAACAs: red or blue. The initial state
consists of either user-specified formations of red and blue ISAACAs
positioned at diagonally opposite corners of the batdefield or of a
random distribution of red and blue ISAACAs occupying the central
square region (of user-specified dimension). Red and blue "flags" are
also typically (but not always) positioned in diagonally opposite corners:
a red flag in the red ISAACAs corner and a blue flag in the blue
ISAACAs corner. A typical "goal," for both red and blue ISAACAs, is to
successfully reach the "flag" positioned in the diagonally opposite
corner (see figure 6). ISAAC also has the provision of defining a
notional terrain. Future versions will include a menu of environmental
obstacles as well.

Each ISAACA exists in one of three states: alive, injured, or dead. Injured
ISAACAs can (but are not required to) have different personalities from
when they were alive. By default, an injured ISAACA's ability to shoot an

25

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

enemy is equal to 1/2 of its ability when alive. Also, if the alive ISAACA
chooses its moves from among lattice sites within a distance of two or
more from its current position, an injured ISAACA's move range is
reduced to the minimum possible range of one unit.

Figure 6. Putative two-dimensional "Combat Battlefield" in ISAAC

Blue Zone

Program Flow

Red Flag

it £>, ,■& i
" ■i: ■a»*»

Ü'i •-■;■■ ■•>.'--■■■•:>< H; j'-.w

s y
1 / s£

/ s;-
«j;

&'•
/ ,?iv £S

/
/

S /
.' **

"
pa

Blue Flag

Red Zone

Each ISAACA has associated with it a set of ranges, within which it senses
and assimilates simple forms of local information, and a personality,
which determines the general manner in which it responds to its
environment. Ranges and personality are described in more detail
below.

Note that while ISAAC is currently designed to accommodate only two
kinds of forces (red and blue), a notional white force can also be defined
by exploiting the features of ISAAC'S multi-squad option (see J&4ACA
Squads).

The program loops through the following basic steps:

• Step 1: Initialize "battlefield" and ISAACA distribution
parameters

• Step 2: Display summary descriptions of red and blue
ISAACAs

• Step 3: Set time counter to 1

• Step 4: Adjudicate combat

• Step 5: Refresh Battlefield Graphics Display

26

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• Step 6: Adapt personality weight vector for each red and
blue ISAACA

• Step 7: Compute local penalty for each of the possible
"moves" that each red and blue ISAACA may choose
to take from its current position

• Step 8: Move ISAACAs to their newly selected position
(some may choose to "do nothing")

• Step 9: Go to Step 4 and repeat.

The most important parts of this skeletal structure are contained in
steps 4, 6, and 7, or the parts dealing with the adjudication of combat,
the adaptation of personality weights, and the decision-making process
that each ISAACA goes through in order to "choose" its next move.
Before describing the details of what each of these steps involves, we
must first discuss how each ISAACA partitions its local information.

ISAACA Ranges

As noted earlier, each ISAACA can know and respond only to
information that is local to its immediate position. Figure 7 shows a
schematic of the five kinds of user-specified ranges that surround each
ISAACA:

• Sensor range

• Fire range

• Threshold range

• Movement range

• Communications Range

Sensor Range

Fire Range

The sensor range (= rs), shown in figure 7 as the outer-most shaded box
surrounding the ISAACA positioned at the black-colored center site,
defines the maximum range at which the ISAACA can sense other
ISAACAs in its neighborhood. Note that this range effectively defines a
boxed area around the ISAACA and not a circle of radius rs.

The fire range (= rF) defines the boxed area surrounding an ISAACA
within which the ISAACA can engage enemy ISAACAs in combat (see
discussion below). Any enemy ISAACA that is closer to a given ISAACA

27

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

than the given ISAACA's fire range may be fired upon by the given
ISAACA.

Figure 7. Various kinds of ranges that surround each ISAACA

| = ISAACA

jH = Movement Range

| = Threshold Range

[ffj = Fire Range

| | = Sensor Range

| | = Communications Range

Threshold Range

The threshold range (= rT) defines a boxed area surrounding an ISAACA.
with respect to which that ISAACA computes the numbers of friendly
and enemy ISAACAs that play a role in determining what move to make
on a given time step. This local decision-making process is described
below.

Movement Range

The movement range (= rM) defines a boxed area surrounding an ISAACA
that defines the region of the lattice from which the ISAACA can select
a move on a given time step. In the current version of ISAAC, rM = 1 or
2, and each ISAACA can select to either "do nothing" (that is, remain
where it is) or move to an adjacent lattice site.

Communications Range

The communications range (= rc) defines a boxed area surrounding an
ISAACA such that any friendly ISAACA within a range rc of that
centrally located ISAACA communicates the information content of its
local sensor field. How the centrally located ISAACA makes use of that
information is discussed in a later section.

Note that while figure 7 shows these four ranges in the particular order
rc > rs > rF > rT > rM, the user can specify any ordering.

28

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An ArtificiaLLife Approach to Land Warfare

ISAACA Personalities

The personality of an ISAACA X represents X's internal value-system as
applied to the set of all possible relevant information that X must use to
select a move or strategy. It is defined by a personality weight vector.

Personality Weight Vector

Each ISAACA is equipped with a user-specified "personality," defined by
a six-component personality weight vector,

w=(wi,W2,...,w&)

where 0 < |wz| < and 2/ |WJ| = • The components of the personality
weight vector specify how an individual ISAACA responds to distinct
kinds of local information within its sensor and threshold ranges.

The personality weight vector may be state-dependent. That is to say,
w(alive) need not. in general, be equal to w(injured). The components
of w can be also negative, in which case they signify a propensity for
moving away from, rather than toward, a given entity.

The default personality rule structure is defined as follows. Since there
are two kinds of ISAACAs (red and blue), and each functioning (i.e.,
non-dead) ISAACA can exist in one of two states (alive and injured),
each ISAACA can respond to effectively four different kinds of
information appearing within its sensor range rs:

• The number of alive friendly (i.e., like-colored) ISAACAs,

• The number of alive enemy (i.e., different colored) ISAACAs,

• The number of injured friendly ISAACAs, and

• The number of injured enemy ISAACAs.

Additionally, each ISAACA can respond to how far it is from both its
own (like-colored) "flag" and its enemy's "flag." Table 5 summarizes the
association among the components of the personality weight vector and
these six kinds of information, and gives examples of defensive and
offensive personalities.

The meaning of these components is to be interpreted as follows: wi

represents the relative weight afforded to moving closer to the i'k type of
information.

29

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Table 5. Components of the personality weight vector w

Examples

Personality weight Type of Information Defensive Offensive

w, alive friendly ISAACAs 30/100 5/100

w2 alive enemy ISAACAs -10/100 25/100

w3 injured friendly ISAACAs 40/100 0

w4 injured enemy ISAACAs 10/100 50/100

w5 own flag 10/100 0

w6 enemy flag 0 20/100

A personality is defined by assigning a weight to each of the six kinds of
information. For example, one ISAACA might give all its attention to
like-colored ISAACAs, and effectively ignore the enemy. The personality
weight vector for such an ISAACA might be given by
w = (1/3,0,1/3,0,1/3), signifying that this ISAACA gives equal weight
to moving closer to friendly ISAACAs and the enemy flag. Another
ISAAC might care only about defending its own goal, and might thus
have a personality prescribed by w = (0,1/3,0,1/3,1/3,0). More
"well-rounded" ISAACAs might better distribute their attention to both
friendly and enemy ISAACAs with, say, a weight vector given by
w = (1/5,1/5,1/5,1/5,0,1/5).

An example of a fairly aggressive personality is one whose weight vector
is given by w = (1/20,5/20,0,9/20,0,5/20). Such a personality is five
times more "interested" in moving toward alive enemies than it is in
moving toward alive friendlies (effectively ignoring injured friendlies
altogether), and is more interested in moving toward injured enemies
than it is even in advancing toward the enemy flag. An ISAAC that has a
personality defined by entirely negative weights - say,
w= (-10,—10,—10,—10,—10,—10) - wants to move away from, rather
than toward, every other ISAACA and both flags.

Among the many interesting questions that such a weight specified
internal value-system immediately suggests is, "What is the "best"
personality mix to use for a given measure-of-effectiveness?" A
technique for directly addressing such questions using Genetic Algorithms
is described in a later section.

The personality weight vector as defined above fixes the default
personality of a given ISAACA. That is, it fixes the personality with
which an ISAACA responds to local information in the absence of other
constraints. Constraints might include a condition such as clamping a
given ISAACA's innate desire to "get closer to" friendly ISAACAs once
the number of surrounding friendly ISAACAs (within the constraint
range, rc; see above) exceeds a given threshold. Another constraint
might be for a given ISAACA not to advance toward the enemy flag

30

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

unless it is surrounded by a threshold number of friendly ISAACAs.
These and other constraints are discussed in more detail below.

A given ISAACA's personality weight vector is used to rank the set of
possible moves that it can choose to take during the current time step.

Squads

ISAAC allows the user to define up to 10 different personality weight
vectors (both alive and injured) for 10 separate squads of ISAACAs. Like
almost everything else in ISAAC, squads are entirely notional entities
and refer simply to collections of ISAACAs sharing the same
personality. Aside from enhancing the innate dynamical richness of
ISAAC'S general conceptual phase-space in an intuitive way,
squad-specific parameters can be used to explore such basic "What If?"
questions of the form "What if I had a just a few more good soldiers?"

Squad-specific parameters in the current version of ISAAC include
initial spatial disposition, sensor, fire and movement range, alive and
injured personality weight vectors, notional defensive strength,
movement constraint thresholds, single-shot probability and maximum
target number. (See Contents of Input Data File)

White Forces

Having squad-specific parameters available makes it possible to
effectively populate the notional battlefield with a third white force; i.e.,
one whose personality does not include a motivation factor to move
toward either red or blue flags.

ISAACA Move Selection

In the current version of ISAAC, each ISAACA can choose to move
from its current position at time t - say, (xt,yt) - to any of the sites that
are either a distance 1 (if the movement range is equal to rM=l) or 2 (if
the movement range is equal to rM=2) from (xt,yt); see figure 8. It can
also select to "do nothing" and remain at its current position. Each site
of the battlefield lattice may be occupied by at most one ISAACA at a
given time.

An ISAACA's personality weight vector is used to rank each possible
move according to a penalty function. The penalty function effectively
measures the total distance that the ISAACA will be from other
ISAACAs (which includes both friendly and enemy ISAACAs) and from
its own and enemy flags, each weighted according to the appropriate
component of the personality weight vector, w. An ISAACA moves to
the position that incurs the least penalty, or the move that best satisfies

31

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

the ISAACA's personality-driven desire to "move closer to" other
ISAACA's in given states and either of the two flags.

Figure 8. Set of possible ISAACA moves from its current (x,y) position

(X-2J+2) <x-l,y+2) <x,y+2) (x+Ijl+2) (x*2,y*2)

(x-2,y+l) (x-l,y+l) (x.y+1) <X+lj+J) (x+2,y+l)

(x-2,y) (x-l.y)
■

(x,y) K+/..W <x+2,y)

(x-2,yl) (x-l,yl) <x,y-i) (x+i,y-l) <x+2,yl)

(x-2,y-2) (x-l,y2) (x.y-2) (x+lj-2) (X+2J-2)

□ :r„ = l

The general form of the penalty function is given by:

Z(x,y) = w^-^AT^^ X ä[i;(x,y)] +
alive red; i

"^blue^liveblue X d[i; (x,y)] +
alive blue; i

-_1 iV7l„,„, E d[i;(x,y)] + w3sred ^injured red
injured red; i

^blue^juredblue £ d[i;(x,y)] +
injured blue; i

w5 fi?new[red flag; (x,y)] I ^0ld[red fla§; (x»y)1 +
w6 Jnew [blue flag; (x,y)] I Jold [blue flag; (x,y)] ,

where w; are the components of the personality weight vector (see

ISAACA Personalities), sTe^ = V2 rre(j and ^^lue = V 2 '"blue are red and

blue scale factors, respectively, d[i; (x,y)] is the distance between the i*
element of a given sum and the ISAACA positioned at (x,y), N; is the
total number of elements within the given ISAACA's sensor range, and
dnew and dold represent distances computed using the given ISAACA's
new (i.e., candidate move) position and old (i.e., current) position,
respectively. For example, the summation X ^jfojO]

alive red; i
appearing at the top of the above expression represents the sum of
distances from the position (x,y) to all red alive ISAACAs located within
the sensor range box of position (x,y). In the case of a red ISAACA, this
sensor range box is defined by sensor range rred s; in the case of a blue
ISAACA, it is defined by sensor range rblue s.

32

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 9. General movement rule

Move to the square that best satisfies personality-driven
"desire" to get closer to (or farther away from) friendly
and enemy ISAACAs and enemy (or own) goal

A "penalty" is computed for each possible move: Zi; Z,,..., ZN. If the
movement range rM=l, N=9; if rM=2, N=25. The actual move is the one
that incurs the least penalty. If there is a set of moves (consisting of more
than one possible move) that incur exactly the same minimum penalty,
an ISAAC randomly selects the actual move from among the candidate
moves making up that set.

The most general movement rule is summarized in figure 9.

Example

Figure 10 shows a portion of the notional battlefield surrounding a red
ISAACA X positioned at (x,y). There are three red ISAACAs (a,b and c
at distances Da, Db and Dc from X, respectively) and two blue ISAACAs
(A and B, at distances DA and DB from X, respectively) within X's sensor
range.

Figure 10. Sample penalty calculation

b Wm
a °b rA

■A. B

j, ■
% *

c
Dc^

D, B-goal

/ DR-goal

Assuming that X's movement range rM=l, X's next move is determined
by minimizing the penalty Z(x',y') that will be incurred by selecting each
of the nine nearest neighboring sites, (x = x, y = y) and
(xf = x± \,yf =y± 1) (shown in gray in figure 10). The penalty is given
explicitly by

33

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

J J\ - ,-lfl Z{x',y') = wlS^d[jj[Da + Db+Dc] +

^2S~ld\X)[DA+DB} + w5
DR-goal

\UR-goal J
+ w6

J->B-goal

\UB-goal J

where DR.goal and D°R ,, are the distances from (x,y) and (x',y') to the
red goal, respectively, and Dg.goaI and D0^,,^ are the distances from (x,y)
and (x',y') to the blue goal, respectively.

Move Sampling Order

There are two ways in which moves can be sampled during an ISAAC
run. At the start of each run, a randomly ordered list of red and blue
ISAACAs is first set up prior to the start of the actual dynamics loop.
During all subsequent passes, ISAACA moves are then determined
either by sequencing through the ISAACAs on this list in fixed order, or,
for better realism, in random order. The user can choose a fixed or
random sampling order by setting a "move-sampling flag" at run-time
(See General Battle Parameters in Contents of Input Data File).

ISAACA Adaptability

As discussed above, ISAAC has been specifically designed to
accommodate a personality-based local dynamics. This means that,
despite changing local environments and conditions, each ISAACA
responds to what it "senses" round itself according to its own individual
personality. The term "personality" here is of course used somewhat
figuratively, as it only loosely refers to what we conventionally mean by a
human personality. However, it does accurately reflect the individually
consistent manner in which ISAACA's assimilate and act upon
information in their sensor fields. One way in which such a consistent,
but thus far fixed, manner of responding to information can be
augmented is to allow each ISAACA's personality to adapt to changing
contexts and/or evolve over time.

Figure 11. Schematic of ISAACA Mete-Personality

Default
Personality

P =
(w1 ,...,w6)

*

Context

'C *

Context-Dependent
(Meta-) Personality

M(P,C)=P'

34

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Conceptually, the idea is fairly simple. Each ISAACA is equipped not
only with a fixed default personality (as defined by its personality weight
vector), but with a set of rules that tell it how to alter its default
personality according to various environmental conditions. In other
words, each ISAACA is endowed with a wieta-personality that tells it how
to adapt its default personality. Figure 11 shows a schematic
representation of this approach.

In the current version of ISAAC, each ISAACA "adapts" to its local
environment in a relatively simple fashion. A typical meta-personality
consists essentially of altering a few of the components of the default
personality weight set according to several local threshold constraints,
measured with respect to a user-specified threshold range (= rT; see
ISAACA Ranges).

There are six possible constraints:

• Advance Constraint

• Cluster Constraint

• Combat Constraint

• Minimum distance to friendly ISAACAs

• Minimum distance to enemy ISAACAs

• Minimum distance to own flag.

Advance Constraint

Consider the advance constraint. The constraint consists of specifying a
threshold number of friendly ISAACAs that must be within a given
ISAACAs constraint range rc in order for that ISAACA to continue
advancing toward the enemy flag.

Recall that w6 represents the relative weight that is assigned toward
"moving closer to" the enemy flag (see table 5). If the actual number of
neighboring friendly ISAACAs is greater than or equal to the threshold
value, the given ISAACA uses the default weight +w6 to decide upon its
next move. However, if the actual number of neighboring friendly
ISAACAs is less than the threshold value, the given ISAACA decides its
next move by using - w6 to decide upon its next move. That is, it
effectively attempts to "move away from" rather than "move closer to"
the enemy goal. Intuitively, the advance constraint embodies the idea
that unless a combatant is surrounded by a sufficient number of friendly
forces, he will not advance toward the goal.

35

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Cluster Constraint

Similarly, the cluster constraint embodies the idea that once an ISAACA is
surrounded by a sufficient number of friendly forces, that ISAACA will
no longer attempt to "move closer to" friendly forces.

The cluster constraint consists of specifying a threshold number of
friendly ISAACAs that must be within a given ISAACA's constraint range
rc in order for the given ISAACA to no longer move closer to friendly
ISAACAs. If the actual number exceeds that threshold, the given
ISAACA will decide upon its next move using w2 = w3 = 0 (see table 5),
thereby effectively ignoring nearby friendly forces.

Combat Constraint

The combat constraint determines the local conditions for which a given
ISAACA will choose to move toward or away from possibly engaging an
enemy ISAACA (see ISAACA Combat below).

Intuitively, the idea is that if a given ISAACA senses that it has less than
a threshold advantage of surrounding forces over enemy forces, it will
choose to move away from engaging enemy ISAACAs rather than
moving toward (and, thereby, possibly engaging) them. More
specifically, the combat constraint consists of choosing a threshold
value of the difference (= Ac) between the number of friendly forces
contained within the given ISAACAs constraint-range box (=
Nfriendly(rc)) and the number of enemy forces contained within the given
ISAACAs sensor range (= Nenemy(rs)): Ac = NfriendIy(rc) - Nenemy(rs). If the
actual difference, Aactual, is greater than this threshold advantage, the
default weight set remains unaffected and the given ISAACA proceeds
to move toward the enemy. If Aactual is less than Ac, then the given
ISAACA will decide upon its next move using the weights w2 = - w2 default

and w4 = - wWault, where w2default and w4default are the default weights for
moving toward alive and injured enemy ISAACAs (see table 5). A
laxgepositive combat threshold represents a defensive mannered ISAACA
force, since such ISAACA's will choose to move away from rather than
engage an enemy unless they have a strong advantage. A large negative
combat threshold represents an offensive mannered ISAACA force, since
such a force will choose to move toward and possible engage an enemy
even if the relative force strengths overwhelmingly favor the enemy.

Minimum Local-Distance Constraints

The last three constraints - minimum distance to friendly ISAACAs,
minimum distance to enemy ISAACAs and minimum distance to own
flag - specify distances such that if a given ISAACA ever finds itself at a
distance less than the threshold distance to the given entity it will choose
to move away from rather than toward that entity. For example, in the
case of the minimum distance to friendly ISAACAs, say that threshold
distance is set to 3. If the given ISAACA finds itself at a distance 5 from a

36

Irreducible Semi-Autonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

particular friendly ISAACA, this constraint has no effect, and the given
ISAACA chooses its next move using the appropriate default personality
weight Wj = wldefauU. However, if the given ISAACA finds itself at a
distance 2 from another particular friendly ISAACA, the constraint
induces the given iSAACA to use Wj = -Wj default instead of +wWefault. The
last constraint, specifying the minimum threshold distance to an
ISAACA's own flag, can be meaningfully applied only if w5default > 0,
otherwise it has no effect on ISAACA's decision on where to move.

Note that unlike the first three constraints (advance, cluster and
combat) - which determine what weights will be applied to neighboring
ISAACAs collectively - these last three constraints are applied to
neighboring ISAACAs individually and locally. That is to say, that the
decision to use a default personality weight or take its negative is made
on an individual basis, and is made according to whether each
neighboring ISAACA is closer to or farther away from the given
ISAACA than the prescribed threshold distance. This decision is made
during the calculation of the penalty function and is therefore implicit
in each of the sums appearing in the previous expression for Z.

Constraint rules are summarized in figure 12.

Figure 12. Sample constraint rules

ADVANCE: Advance toward enemy goal if and only if
the number of surrounding friendlies
exceeds a given threshold

CLUSTER: Stop moving toward surrounding friendlies
if the number of friendlies exceeds a given
threshold

COMBAT: Move toward and engage the enemy if and
only if the difference between friendly and
enemy force strengths exceeds a given
threshold

ISAACA Combat

In its current version, ISAAC adjudicates combat in the simplest
possible manner (see figure 13). During the combat phase of an
iteration step for the whole system, each ISAACA X (on either side) is
given an opportunity to "fire" at all enemy ISAACAs Y that are within a
fire range rF of X's position. If an ISAACA is shot by an enemy ISAACA,
its current state is degraded either from alive to injured or from injured
to dead. Once "dead," that ISAACA is permanently removed from

37

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

further play. The probability that a given enemy ISAACA is "shot" is
fixed by user specified single-shot probabilities for red-by-blue (pss = prb)
and blue-by-red (pss = pbr). The single-shot probability for an injured
ISAACA, pss

injured, is, by default, equal to one half of its single-shot
probability when it is alive (pjnjured = 1/2 pss

a,ivc).

By default, all enemy ISAACAs within a given ISAACA's fire range are
targeted for a possible hit. However, the user has the option of limiting
the number of simultaneously engageable enemy targets. If this option
is selected, and the number of enemy ISAACAs within an ISAACA's
fire-range exceeds a user-defined threshold number (say N), then N
ISAACAs are randomly chosen from among the ISAACAs in this set.

This basic combat "logic" may be enhanced (by setting the appropriate
software "flags" prior to run-time; see User's Guide) by three additional
functions:

• Defense, which adds a notional ability to ISAACAs to be able to
withstand a greater number of "hits" before having their state
degraded,

• Reconstitution, which adds a provision for previously injured
ISAACAs to be reconstituted to their alive state, and

• Fratricide, which adds an element of realism to ISAAC combat by
making it possible to inadvertently "hit" friendly forces

Figure 13. Blue X targets 3 Red ISAACAs, Yp Y2 and Y3

Defense

□ :=X's
fire-range

Each ISAACA is endowed with a notional defensive capability (i.e.,
"armor") that defines the number of successful "hits" that are required
to degrade an alive ISAACA to an injured state or remove an injured
ISAACA from further play. By default the notional defensive strength

38

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

of all (alive and injured) ISAACAs is equal to 1, meaning that a single
hit is sufficient to degrade an ISAACAs state. Setting the notional
defensive strength of one side equal to the total number of iteration
steps desired for the entire run effectively renders that side impervious
to enemy fire.

Reconstitution

Fratricide

If the reconstitution flag is set at run time (see User's Guide), each
ISAACA is endowed with a fixed reconstitution time trecon. This adds the
logic that if an ISAACA X, after being "hit" by an enemy ISAACA Y (and
thereby being degraded from an alive to an injured state), is not hit
during the next trecon iteration steps, X is reconstituted to its alive state.
Note that setting reconstitution time to trecon = 0 is effectively equal to
having an infinite notional defense, since an ISAACA that is "hit" by the
enemy is immediately reconstituted.

If the fratricide flag is set at run time (see User's Guide), every potential
engagement of an enemy ISAACA entails the possibility of fratricide.
Specifically, if an ISAACA X targets an enemy ISAACA Y (that is within
the fire range rF of X) but does not "hit" Y - a hit/miss being decided by
X's single-shot probability p^ - then, with probability pfrat, a friendly
ISAACA X' within a fratricide range r^ of Y may be hit instead (see
figure 14).

Figure 14. Schematic of a fratricide "hit" of X' by X

39

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Communication

If the communication flag is set (see User's Guide), each ISAACA X can
communicate with all friendly ISAACAs Y that are located within a
communications range rc of X; see figure 15.

All friendly ISAACAs Y within range rc of X communicate to X the
information contained within their own sensor range rs. ISAACA X then
incorporates this additional information into its penalty calculation by
weighing all communicated information with a communication weight

Wcomm ^ 0. The full penalty is defined as

Z(x,y) = Zo(x,y) + wCommZComm(x,y),

where Zo(x,y) is the communications-Tree penalty function defined
earlier, and ZComm(x,y) is the same penalty function applied to
communicated information.

If Wcomm =0 , X effectively ignores all communicated information; if
yvcomm = 1/2, X considers all communicated information "half as
important" as the information contained within its own sensor field; if
Wcomm = 1 i X considers all communicated information on equal terms
with information within its sensor range.

Figure 15. Schematic of ISAACA communications

Command and Control

In its simplest run mode, ISAAC has only one kind of ISAACA, and uses
a strictly decentralized command and control structure: ISAACAs do not
communicate with any other ISAACAs and all ISAACAs base their
decisions on information that is strictiy local to their sensor's

40

Irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

field-of-view. Although such a design is entirely adequate for exploring
the consequences of having a rigorously decentralized C2 structure, any
serious analysis tool of real combat must, of course, include some form
of a functioning C2 hierarchy.

To this end, the user has the option of defining a notional command
and control (C2) hierarchy within ISAAC. This hierarchy consists of
ISAACA collectives, wherein red and blue sides both consist of three
different kinds of ISAACAs (see figure 16):

• Elementary combatants, such as have been already described above.

• Local commanders, which are ISAACAs that command, and
coordinate information flow among, local clusters of elementary
combatants.

• Global commanders, which are ISAACAs that have a more global
perspective of the batdefield, and coordinate the actions of the
local commanders under their command.

Figure 16. Schematic representation of a ISAACA C2 hierarchy

global commander

■ = ISAACA ~~

D = local commander

command
radius

In its current design (which will undoubtedly evolve in sophistication in
future versions of ISAAC), local and global commands involve a
goal-specification on successive nestings of blocked sites. That is to say,
one way in which, say, local commanders can issue orders to the
elementary combatants under their command — in a way that is also
consistent with the general individual-personality-driven
decision-making process introduced in this paper — is to issue

41

/irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

intermediate "goals" that the elementary combatants must attain within
certain time frames within given blocks of sites. The elementary
combatants use exactly the same personality-driven criteria to select
their local moves, but their goals no longer consist solely of getting to
the enemy's flag; in addition, their goals now include a variety of lesser,
local goals as specified by their local commanders. The selection of
these local goals, in turn, are driven by more global strategies that
would be the result of the decision-making processes taking place in the
"minds" of global commanders (see below).

Local Command

If the user chooses to use the local command option (which is done by
setting an appropriate "flag" in ISAAC'S data-input file; see discussion in
A Concise User's Guide to ISAAC), the internal logic of the program is
enhanced in two ways:

1. Local commanders (LCs) are introduced, and are given a certain
number of subordinate ISAACAs to command.

2. Elementary ISAACAs that are under the command of a LC are
endowed with two additional weights, one of which defines
their propensity for "staying close to" their LC (=wLC) and the
other the propensity for "obeying" the orders issued by their LC

(=Wobey)-

Figure 17. Local command (see text)
1

l_ ! ! ;R=l3(2r+l); !
| '

: ii

:® : "CAT" :®

: ; zi : : z2 z3
1 /~s

' + \LC\

■ ;©; • i ; ©
"Tu"

; : z4 i i zs ^6

^r« i
:© i i© i :o ; ISAACA

" 1 i z7 i i z8 z9

::::::::

42

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Local Command Area

Local commanders are endowed with a surrounding "command area"
(defined by a command radius Rcommand) that moves with them as they
move throughout the lattice. This command area is also partitioned
either into 3-by-3 or 5-by-5 blocks of smaller blocks. Figure 17 shows a
schematic of a typical local command structure partitioned into nine
sub-blocks.

The center positions of these smaller blocks represent transient "local
goals" that a local commander can order his subordinates to "move
toward" during a given move (how these orders are actually issued is
discussed immediately below). The size of these smaller blocks is equal
to (2rbIock+l)-by-(2rbIock+l) where rblock is the effective (user-defined)
"radius" of the block. The overall command area is therefore either a
3(2rblock+l)-by-3(2rblock+l) or a5(2rblock+l)-by-5(2rblock+l) square.

The user can define up to 25 different LCs, each of which can have up
to 100 subordinate ISAACAs under their command. Each LC is also
endowed with a unique movement- and command-personality.

A LCs movement personality is defined by the same personality weight
vector described earlier, except that it does not have to equal the
personality weight vector assigned to its subordinate ISAACAs. For
example, the "personality" of a LCs subordinates may be defined by the
personality weight vector w = (10,40,10,40,0,50) and continue
moving toward neighboring friendly forces only until surrounded by
five friendlies, while their commander "wants" only to progress toward
goal (i.e., w = (0,0,0,0,0,10)) while always seeking to cluster with
whatever friendly forces may be nearby.

If no enemy ISAACAs are sensed in the local command area, all
components of the LCs personality weight vector are temporarily set to
zero (wi=...=w5=0) except w6 (i.e., enemy goal).

The local command personality is defined by four weights (cxlocaI, ßlocal,
^locai and Yiocai) t^iat prescribe the relative degree of importance the LC
places on various measures of relative information contained in each
block of sites within his command area. Specifically, the LC weighs each
block of sites by a penalty weight z; given by

where Ff™ and F*"juml are the number of alive and injured friendly
ISAACAs in the i* block, £/'fe and E™juml are the number of alive and

43

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

injured enemy ISAACAs in the i* block, 0<afoöri,ßfoarf,8focaZ,yfoori:
and a local + ß local+ S local + J local:-

In words, an LC identifies the block of sites within his command area
that contains the smallest fractional difference between friendly and
enemy forces; i.e., the block B; for which zi is a minimum. All
subordinate ISAACAs are then "ordered" to move toward the center of
that block. In the event that more than one block yields the same
minimum value, the LC chooses the one that is closest to the block
chosen on the previous iteration step.

If a local commander is killed, a random ISAACA under its command is
"promoted" to LC status and resumes the previous LC's function.

Subordinate ISAACAs

As mentioned above, once the local command option is enabled, the
personality weight vector defining the elementary ISAACAs under the
command of a LC is automatically enhanced to include two new
weights:

• 0 < WLQ < 1, that defines the relative weight afforded to "staying
close to" their LC, and

• 0 < iVgfrgy < 1, that defines the relative weight afforded to

"obeying" the orders issued by their LC.

In the case of wLC > 0, a subordinate ISAACA will seek to "move closer
to" his LC (or, more specifically, his LC's x,y coordinates) whenever that
subordinate is outside his LC's command area. If the subordinate
ISAACA is inside his LC's command area, xvLC is temporarily (i.e., during
that iteration step) set to zero. Note that wLC is actually determined by a
user-specified pre-factor cc that multiplies the maximum value of an
ISAACA's personality weight vector (see User's Guide); i.e.,

WLC = axmaxda/!!,...,!^!).

Once the LC issues a "move to block B" order, his subordinate ISAACAs
respond by incorporating the (x,y) coordinates of the center of block B
(=(xB,yB)) by using the following penalty function for their individual
move selection:

Z= Z0 + wLC(move to xLC,yLC) + wobey(move to xB,yB) ,

where Z0 is the penalty function used by individual ISAACAs (without
local command).

44

Irreducible &mi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

The values of wLC and wobev relative to 1 (the effective constant in front of
Z0) define the relative weights that an individual ISAACA gives to either
"staying close to" or "obeying" his LC. For example, a maximally
insubordinate ISAACA that totally disregards his LC's orders has wobey=0.

Example

Figure 18 shows an example of a blue LC defined by local command
weights aloca] = ßlocal = 8local = ylocal = 1/4. In this case, the penalty weight for
the 1th block, Bi; of his command area is simply equal to the difference
between the number of blue and red ISAACAs in B, divided by the total
number of red ISAACAs in the entire command area. With the local
distribution of red and blue ISAACAs as shown in figure 18, the LC finds
that - consistent with his command personality as defined by the weights Ctlocal,

ßiocai' ^locai' an<^ Tiocai ~ block B3 (in which a single blue ISAAC in block B3 is
outnumbered by three red ISAACAs) is the block that is in the greatest
need of local blue assistance. The LC therefore issues a "move to block
B3" order to all subordinate ISAACAs.

Figure 18. Local command (see text)

Order =
"Move to Block 3"

ISAACA

0 %

z,=0 z,=-l/10 z,=-2/10

z4=0

LC

• ---
Zj=0

z,=+3/10

• • •

z„=+l/10

Global Command

Global commanders (GCs) issue orders to local commanders using
global (i.e., battlefield-wide) information. GCs effectively know everything
about the overall state of the battle, at least during the preceding
iteration step. Their orders to subordinate LCs consist of two parts: (1)
the manner in which to respond to other LCs, and (2) a direction into
which to move.

GC Command of LC-LC interaction

Interaction among LCs is mediated by the GC, who effectively "decides"
when to send a local commander LC((and his subordinates) to "help" a
nearby LC according to the relative health states of LC; and LCp The
health state of the i* local commander, 0 <health(LC A < 1, is a simple

45

irreducible Ami-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

measure of how close the overall state of that LC's command area is to
its initial state. If all subordinates are present14 and there are no enemy
ISAACAs within the command area, the health state is maximum and
health (LC;) = 1; if all subordinates have been killed or the command
area contains the maximum number of allowable enemy ISAACAs, the
health state is minimum and health (LC;) = 0. Intuitively, as an LC's
health value decreases, "need for assistance" increases. More
specifically, health (LC;) is defined as follows:

health(LCj) = a
fF(l+yF0-E)
I F0(l+yF0)

where G(x) = xif0<x<l else a(x) = 0 , F0is the total number of alive
friendly subordinates under LC/s command, Fis the current number of
subordinates within the local command area, E is the current number
of enemy ISAACAs within the local command area, and 0 < y < 1 is a
factor that specifies the maximum number of "allowable" enemy
ISAACAs (as a fraction of the initial number of friendly subordinates).
For example, if y=l, then health (LC;) ~ 0 when E = F0 and health(LQ) ~
1/2 when E = 1/2 F0. Figure 19 shows plots of health(LQ) as a function
of E for Y=0.2, y==0.5, and 7==0.9 for the cases (F0 = 100,16=100) and (F0 =
100,25=75).

Figure 19. Plot of health(LC) versus number of enemy ISAACAs

1
k F0 = 100
\\\ F = 100

o

CO

sz

1/2

0
VY=0.2\Y=0.5 \Y=0.9

3 20 4Ü ÖÜ 80 1U0

F0 = 100
F = 75

O

CO
CD

Number of Enemy ISAACAs (E)
20 40 ÖÜ ÖÜ 100

Number of Enemy ISAACAs (E)

If a given LC; is "healthy" enough - that is, if his health state exceeds a
given threshold, h^^ - he looks for other LCs, LCj; within his help
range Rh that he can move toward to help. Candidate LCs to help are
those for which the relative fractional health (= Ay) is greater than a
health threshold (=Ahthrcsh). LQ moves toward the closest LCj that needs
help. This GC LC-LC interaction rule is summarized in figure 20.

14 The health measure as defined in this version of ISAAC does not yet discriminate
between individual alive and injured ISAACA states.

46

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 20. Rule for GC mediated LC-LC interaction

LCi"help"LCi if

GC Command of Autonomous LC Movement

In addition to mediating the interaction among subordinate local
commanders, the GC also determines the direction into which each of
his LCs shall move. In order to explain how a GC "decides" upon a
direction, we must first introduce three ideas: (1) battlefield sectors, (2)
way-points, and (3) the GC-fear index. Figure 21 illustrates the pertinent
parameters.

Consider a local commander LC; under the command of a GC. Using
the (x^V;) coordinates of LC/s position at time t, the GC partitions the
entire batdefield into 16 sectors (S1,S2,...S16). The boundary of each of
these sectors is set by (x^) and the (x,y) coordinates of 16 next-nearest
neighboring way-points (COj, COg,..., ©iß) > equally spaced along the edge
of the batdefield. These way-points represent the possible "directions"
into which a subordinate LC might be ordered to move.15 The
definition of sectors Sj and S7 are shown in figure 21.

Each way-point CO; is assigned a weight that represents the penalty that will
be incurred if LC{ moves in that point's direction. Assume that the red and
blue flags are positioned near the lower-left and upper right of the
batdefield, respectively. Since the red GC wants to get to the blue flag
(near C09), the red GC way-point weight distribution is fixed by setting Cöj
to the maximal possible value, 1, and 039 to the minimal value, 0; the
remaining weights for (02 - co8 and (010 - <a16 are then assigned values
between 0 and 1, with higher penalties appearing for points closer to
C0j: COg = 0 < ©8, Cöjo < • • • < ©2, ©ig < COj = . For blue GCs, that want
to get to the red flag near G^), the way-point weight distribution is just
the opposite: G)9 is assigned the maximal possible value, 1, and (Oj the
minimal value, 0, and (Dj =0 < (OgjOjö - "" — "^»^lO — ®9 = 1-

15 Note that this program logic is currently defined only for the case where the red
and blue flags are located in the lower-left and upper-right of the notional batdefield.
Future versions of ISAAC will eliminate this arbitrary constraint.

47

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 21 shows that each sector S; is subdivided into three rings: an
inner ring (that is closest to LC;'s position) Rp a middle ring Rg, and an
outer ring Rj. These rings, from inner to outer, define successively "less
important" regions to the GC, as far as the information that he will use
to guide LCj's motion is concerned. Specifically, this information is the
density of enemy ISAACAs within the different sub-regions of a given
sector. Thus the inner-most region, out to a radius R: from LCj's
position, represents that area around LC; that the GC cares most about.
The middle area, at distances Rj < R < 1^ from LC;'s position, represents
an intermediate level of importance. The outer ring, at distances
greater than R^ represents an area of the battlefield that a GC is
currendy least concerned about in deciding what direction to order LQ
to move into.

In defining these sectors and their sub-regions, the user supplies values
for Rj, and Rg along with the relative weights
0 < züßj, ZUR2 , WR$ < 1, WR + WR2 + WR3 = 1 that specify the relative
degree of importance that the GC will assign to the corresponding
sub-regions of each sector.

Having defined battlefield sectors and way-joints, we are now finally in a
position to describe how a GC "decides" upon a direction into which to
send each of his subordinate LCs, as well as what those LCs do with such
orders. In words, the GC computes a penalty value, P;, for ordering a LC
into sector S; (spanning way-points co^ and coi+1), and orders the LC
toward the sector S; for which R is minimal.

Figure 21. Global command (see text)

CO,

CO.

"3

CO-,

CO,

48

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

The penalty value consists of two parts, the intrinsic penalty incurred by
moving toward way-point (ty, and the penalty incurred by moving into a
sector that has a given density of enemy ISAACAs. Specifically,

Pi = (l-./)(öi+/pf,

where p^ is the number of enemy ISAACA per unit area in sector S;

(weighed using weights w^, w^, and WR^ for sub-regions R,, R, and

R3 of each sector; see above), and 0 </< 1 is the GC fear index. If/= 0,
the GC is effectively fearless of the enemy and the criteria by which he
decides what direction to send each of his LCs into consists entirely of
the intrinsic penalty value associated with each way-point; i.e., Pi = CO;.
On the other hand, if/= 1, the GC is concerned only with keeping his
LCs (and their subordinates) away from harm's way and his choice of
movement vector is made entirely on the basis of the enemy force
strength in each sector. Any value for / between these two limits
represents a GC command-personality-defined tradeoff between
wanting to simultaneously satisfy two desires: moving LCs closer to the
enemy flag and preventing them from encountering too many enemy
forces while doing so.

The general rule for GC command of LC movement is summarized in
figure 22.

Figure 22. Rule for GC command of LC movement

Order LC to move to the s«
the penalty Pj is minimum:
Order LC to move to the sector Sj for which

» pf = <xpf(AE) + ßpf(IE)

• O^fsSl

LC Response to GC Commands

Having received an "order" from his GC, a local commander must now
weigh several different factors to decide on his own course of action: his
sensor view of battlefield, the disposition of his subordinate ISAACAs
within his command area, and the tradeoff between helping other local
commanders (who, according to the GC, may be in need of assistance),
and moving toward the enemy goal. The LCs decision is shaped by
using three additional command weights:

49

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• 0 < Qhelp - 1 > that defines the relative weight afforded to

moving toward and "assisting" another LC,

• 0 < QSec tor - 1 > that defines the relative weight afforded to
moving into a GC-ordered battlefield sector , and

• 0 < ^obey-GC - 1» that defines the relative weight afforded to

obeying GC orders.

Once the GC issues orders to "move toward another LC" and/or "move
toward way-point CO;", his subordinate LCs decide upon their own moves
according to the following penalty function:

Z = Z0 + ^obey-GC {^help(move toward LC j) +

^sector(move toward LC^)}

The value of ßobeyuGC relative to 1 (the effective constant in front of Z0)
defines the relative weight that a LC assigns to the movement vectors
ordered by his GC. For example, ßobey^c= 1 rneans that the LC treats his
own information and the information supplied by his GC on an equal
footing; ßobeyiGC= 0 means that the LC effectively ignores his GC's orders.

50

Irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

A Concise User's Guide to ISAAC
ISAAC is a DOS program. It can be run from either the DOS command
line or within a DOS-box in windows. Since it is written in ANSI-C,
ISAAC is highly portable, though its current version uses graphics
primitives defined in Microsoft's Visual C/C++ compiler for DOS (vl.52).
A fragment of ISAAC'S source code and header files is provided in
appendix C.

Hardware Requirements

Computer Memory

The executable supplied on the accompanying disk has been compiled
using Phar Lap's 286IDOS-Extender16 to allow it to use up to 16 MB of
extended memory. While the source code can of course by compiled
without a memory extender, and ISAAC can be run with computers
equipped with even 1 MB of RAM, DOS's 640K memory ceiling places a
significant constraint on the battlefield size and/or maximal number of
ISAACAs that can be defined per run (see table 6).

Table 6. Tradeoff between available memory and some basic run-time
parameters in ISAAC

Parameter Using DOS-Extender No DOS-Extender
 (16MB) (640KMax)

Number of ISAACAs/side < 500 <80

Battlefield size < 150-by-150 < 80-by-80

Graphics

ISAAC can be run in either VGA (640-by-480) or SVGA (800-by-600)
graphics modes, the default (and preferred) mode being SVGA. On
some older computers, a utility program such as wesa.com must be
run prior to running ISAAC to enable SVGA graphics.

16 Phar Lap Software, Inc., 60 Aberdeen Avenue, Cambridge, MA 02138; WWW
address: http://www.pharlap.com.

51

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Installing ISAAC

To install ISAAC, copy all the files from the accompanying disk into a
subdirectory on a hard drive. For example, assuming the disk is in drive
A and you wish to install ISAAC in a subdirectory called ISAAC on hard
drive C, enter the command

xcopya:*.*/s/v c:/ISAAC (...followed by ENTER)

This command will copy all executables and necessary font files, and
create two additional subdirectories in c:/ISAAC>:

• c:/ISAAC/DAT> - which contains sample input data files

• c:/ISAAC/OUT> - which contains sample *.out files of
previously recorded runs

Starting ISAAC

To start the Core Engine of ISAAC (see table 4), go to the appropriate
subdirectory on the hard drive (say, C:/ISAAC>) and type the
command ISAAC followed by <ENTER> on the DOS command line.
You will see the opening screen (figure 23), specifying the current
version and build date of the program and a prompt to press <ENTER>
to continue.

Figure 23. ISAAC'S opening screen

ISAAC
Irreducible Semi-Autonomous

Adaptive Combat

Version 1.8;4
10 April 1997

Andy ilachinski
Center for Naval Analyses

4401 Ford Avenue
Alexandria, VA 22302

ilachina@cna.org

Press <ENTER> to continue

52

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

The next screen prompts for the type of run desired (see figure 24).
You may select to either run the core engine with some new input, to
replay an old run at high speed using a previously stored data file, or
quit the program. Because ISAAC is computation intensive, the speed
of real-time screen updates of an actual run (i.e., using the core engine)
will depend heavily on the speed of the computer. As a baseline
measure, each iteration of a scenario in which there are 50 red and 50
blue ISAACAs, each ISAACA evolves according to all six movement
constraints oudined in the previous section and each ISAACA possesses
a moderate sensor range (rs = 4), takes about 1-1.5 sec to update on the
screen of a 33 MHz 486-class computer. Play-back of the same scenario
on the same computer from a data file proceeds roughly ten times
faster.

Figure 24. ISAAC'S main option screen

SELECT RUN OPTION

lil Run ISAAC engine with new input
[2] Playback old run
[3J Quit

If option 1 is selected, the user is prompted to select the form of data
input. Data may be input by either having ISAAC prompt the user for
all information on screen, or by reading direcdy from an input data file.
Several sample input files (ISAACdat, ISAACJLCdat, ISAAC_GC.dat,
and TERRAIN.dat) are provided on the supplied disk. Their contents
are described below.

Figure 25. ISAAC'S second option screen

SPECIFY FORM OF OUTPUT

[1] Terminal

[3] Both

If option 2 is chosen, the program prompts for a file name, then loads
and executes the playback of that file. The accompanying disk contains
several self-extracting compressed "OUT" files (as previously recorded
files will be called) that, when executed, automatically decompress (and

53

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

store on the hard drive) several sample *. out data files that can then
be run with option 2. (See Sample Runs)

The user is next asked to select the method of data output during the
current run; see figure 25.

The choices are either to display output only to the computer's screen
(option 1), to by-pass the screen and store directly to a file (option 2),
or to do both (option 3). If the selected option involves writing to a file,
the user is prompted for an output data file name and the total number
of iteration steps to record. (As mentioned above, ISAAC'S sample
output files are named *.out, but the user may, of course, choose any
other name.) The default, and preferred graphics mode is SVGA
(800-by-600 resolution), but ISAAC can "fall back" to VGA (640-by-480)
automatically if the hardware and/or software combination does not
permit the higher resolution mode.

Contents of ISAAC'S Input Data File

As mentioned above, the accompanying disk contains several sample
data files: (1) ISAACdat, which contains parameters defining a simple
scenario in which 50 red and 50 blue ISAACAs advance toward one
another without either side having any command and control structure;
(2) ISAAC_LC.dat, which defines a scenario in which red is endowed
with a single local commander; (3) ISAAC_GC.dat, which gives red a
global commander with three subordinate local commanders, and (4)
TERRAIN.dat, which is a sample terrain data file populating the
battlefield with several impenetrable terrain features.

Because of the number of user-specified options and parameter settings
available, the preferred mode of data entry is always direct file input,
though the user always has the option of using on-screen prompts to
input all values. In this section we will describe in some detail the
contents of a generic ISAAC *.datfile.

A typical ISAAC *.dat file is nothing more than a lengthy listing of
labeled parameter values partitioned into several self-contained
sections:

• General battle parameters

• Initial distribution

• Fratricide parameters

• Reconstitution

• Statistics parameters

• Red global command parameters

54

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• Direction parameters

• Help parameters

• Blue global command parameters

• Direction parameters

• Help parameters

• Red local command parameters

Local commander parameters

Local commander personality

Local commander constraints

Local command weights

Global command weights

• Blue local command parameters

Local commander parameters

Local commander personality

Local commander constraints

Local command weights

Global command weights

Red ISAACA parameters

ALIVE personality weights

INJURED personality weights

ISAACA-LC weights

Sensor/fire ranges

Communications

Movement constraints

Combat/engagement

• Blue ISAACA parameters

ALIVE personality weights

INJURED personality weights

ISAACA-LC weights

Sensor/fire ranges

Communications

Movement constraints

Combat/engagement

• Terrain parameters

Note that most sections are further subdivided into one or more
subsections containing clusters of related variables. Not all sections
contain values for all scenarios, however. Also, some sections, such as

55

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

those for defining local command parameters and terrain are variable
in length (see below).

General Battle Parameters

The first section of user-specified parameters is the General Battle
Parameters section. A sample fragment appears in figure 26. A short

• description of each variable appearing in this section is given below.

Figure 26. General battle parameters

vibattl ;e_^1: z e.:::
: %m:;>;- 8 0.;:; ^

v*'.. :i hi t i: ä T :i d i S:t r i b U t i on';;.;

4 n i t_d i st^f 1 ag?:; v ■: 1 •■; ■
R_bOx_Ü,w) 20,2020,20 20,20 20,20 20,20 20,20 20,20 20,20 20,20 20,20 ;
RED_cen,(X,y) . 20,20 20,20 20,20 20,20 20,20 20;20 20.20 20,20 20,20 20,20
Bboxjl.w) 20,20 20,20 20,20 20,20 20,20 20,20 20,20 20,20 20,20 20,20
BLUCceMx.y): 70.70 70,70 70,70 70,70 70,70 70,70 70,70 70,70 70,70 70,70 i

: B^fl ägIKx,y>;; .: 7.9,-79 ^M.^^M^^'-'::
R_f 1 a qkCxm m 1> :■ 1 v 1;:
fermtwatioh? ^^^ßZ^.^-i'M..:,
move border?;: ■:Hy\':.yZ:/

:y-:\":^

:tetr:a;th_f 1 ag? ':y:; V::;: 0: j■

;'+0 ra-tr-i cideVipa^ameters :;

::redi:frat_.f1:äg:? t,.:.-P^-fe-:;:-o.:-V';-^-:-': :'■■;,: '■■:■:■.'
;-^i:liü-e^rbt^f"1;ä.g?::: :-"::;;:P.;"-;':;
:;;red_^-fr:a;t_.rad .: ,:^:.-..>i--'.;-■?■■■'
:";bl:ue^fra:t_rad '■;::;:; .KI.M
::redzfrat_prob'■:■"•'■: :0vOQlOOOV ;
;m ue_frat_prob ;■;!■•:;[■:0:001000 ::;::-

I"* re constitution V

reconst^flag?. ■ i-: .10 ■■:'.""
:" R£ D_j" eq p n_t i me :; ■ :10": :'
i;B tUE_rec o n_t i me 10 ;

batüe_size

The first entry is batüe_size, which defines the length of one of the
sides of the two-dimensional square lattice on which the run is to take
place. The user can specify any integer number between 10 and 150.

init_dist_flag

init_dist_flag can take on one of three integer values: 1, 2 or 3. If
init_dist_flag = 1, the user defines the actual spatial distribution of red
and blue ISAACAs (see next few parameter entries); if init_dist_flag = 2,

56

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

red and blue ISAACAs initially consist of random formations near the
lower-left and upper-right corners of the notional battlefield; if
init_dist_flag = 3, red and blue ISAACAs are initially randomly placed
within a square box at the center of the battlefield.

R_box_(l,w)

This defines the (length, width) of the "box" containing the initial
distribution of red ISAACAs for each of ten squads. Note that ISAAC
assumes that all ten fields will be filled in even if there are fewer than
ten red squads.

RED_cen_(x,y)

The (x,y) coordinates of the center of the "box" containing the initial
distribution of red ISAACAs for each of ten squads: 0 < x, y <
battle_size. Note that ISAAC assumes that all ten fields will be filled in
even if there are fewer than ten red squads, x and y are constrained to
lie between 1 and batüe_size.

B_box_(l,w)

This defines the (length, width) of the "box" containing the initial
distribution of blue ISAACAs for each of ten squads. Note that ISAAC
assumes that all ten fields will be filled in even if there are fewer than
ten red squads.

BLUE_cen_(x,y)

The (x,y) coordinates of the center of the "box" containing the initial
distribution of blue ISAACAs for each of ten squads: 0 < x, y <
battle_size. Note that ISAAC assumes that all ten fields will be filled in
even if there are fewer than ten red squads, x and y are constrained to
lie between 1 and battle_size.

B_flag_(x,y)

The (x,y) coordinates of the blue flag: 0 < x,y < batüe_size.

R_flag_(x,y)

The (x,y) coordinates of the red flag: 0 < x,y < batüe_size.

termination?

This parameter "flag" specifies the termination condition that will be
used during this run: if termination is set equal to 1 then the run is
terminated whenever any ISAACA (red or blue) reaches the opposing
color's flag for the first time; if it is set to 2, the run continues until the
run is terminated by the user (by pressing the "Q" key).

57

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

move_order?

There are two ways in which moves can be sampled during an ISAAC
run. If move_order = 1, then, at the start of each run, a randomly
ordered list of red and blue ISAACAs is first set up prior to the start of
the actual dynamics loop. During all subsequent passes, ISAACA moves
are then determined either by sequencing through the ISAACAs on this
list in fixed order. If move_order = 2, this sequencing occurs in random
order. See ISAACA Move Selection.

combat_flag?

If combat_flag = 0 then there is no limit to the maximum number of
possible simultaneous engagements: all enemy ISAACAs within a given
ISAACA's fire range will be automatically targeted for engagement. If
combat_flag = 1 then each side will be able to simultaneously target a
certain maximum number of enemy ISAACAs per iteration step. See
R_max_eng_num and B_max_eng_num. See ISAACA Combat.

terrain_flag?

The software "flag" terrain_flag controls the use of notional terrain and
takes on one of two values: 0 or 1. If terrain_flag = 1 then terrain will be
used (see Terrain Parameters); if terrain_flag = 0 then terrain will not be
used.

red_frat_flag?

The software "flag" red_frat_flag controls the use of fratricide on the
red side and takes on one of two values: 0 or 1. If red_frat_flag = 1 then
red ISAACAs will be able to accidentally target friendly red ISAACAs; if
red_frat_flag = 0 then fratricide will not be possible. See ISAACA
Fratricide.

blue_frat_flag?

The software "flag" blue_frat_flag controls the use of fratricide on the
red side and takes on one of two values: 0 or 1. If blue_frat_flag = 1
then red ISAACAs will be able to accidentally target friendly blue
ISAACAs; if blue_frat_flag = 0 then fratricide will not be possible. See
ISAACA Fratricide.

red_frat_rad

This parameter defines the radius around a targeted enemy ISAACA
such that, if the red_frat_flag=l (so that fratricide is possible on the red
side), all red ISAACAs located within the "box" defined by this radius
become potential victims of fratricide. See ISAACA Fratricide for more
detailed discussion.

58

Irreducible Semi-Autonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

blue_frat_rad

This parameter defines the radius around a targeted enemy ISAACA
such that, if the blue_frat_flag=l (so that fratricide is possible on the
blue side), all blue ISAACAs located within the "box" defined by this
radius become potential victims of fratricide. See ISAACA Fratricide for
more detailed discussion.

red_frat_prob

The probability that a red (i.e., friendly) ISAACA is inadvertendy "hit"
by a shot that was intended to hit a nearby enemy (i.e., blue) ISAACA.
See ISAACA Fratricide.

blue_frat_prob

The probability that a blue (i.e., friendly) ISAACA is inadvertendy "hit"
by a shot that was intended to hit a nearby enemy (i.e., red) ISAACA.
See ISAACA Fratricide.

reconst_fIag?

The software "flag" reconst_flag toggles the reconstitution option. If
reconst_flag = 1 then reconstitution will be used; if reconst_flag = 0
then reconstitution will not be used. See Reconstitution in ISAACA
Combat.

RED_recon_time

If the reconstitution flag reconst_flag is set equal to 1, then
RED_recon_time defines the number of iteration steps following a "hit"
(either by blue or, if the fratricide flag red_frat_flag is enabled, red
ISAACAs) such that if during that time interval a given red ISAACA is
not hit again, that ISAACAs state is reconstituted back to alive. See
Reconstitution in ISAACA Combat.

BLUE_recon_time

If the reconstitution flag reconst_fiag is set equal to 1, then
BLUE_recon_tirne defines the number of iteration steps following a
"hit" (either by red or, if the fratricide flag blue_frat_flag is enabled,
blue ISAACAs) such that if during that time interval a given blue
ISAACA is not hit again, that ISAACA's state is reconstituted back to
alive. See Reconstitution in ISAACA Combat.

Statistics Parameters

The Statistic Parameters section of the input data file consists of several
flags the user can set to regulate the calculation of specific sets of
summary statistics for a run. A sample fragment is shown in figure 27.
See Data Collection.

59

Irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 27. Statistics Parameters

.:*;:VSTATi;STIG| ■ PARAMETERS

:goa 1 _slat_f"I ag?:;:;;:; :D \W
center^ntassiflag? ";0 ;.-.■'■■:
iriterpoinVfläg? :0 :
entropy^_f lag?:?:■•■ . ■ ■ 0 ■

;cl usiterl:2lf 1 ag? :
; 0;: :A

nei gftbörs_f 1 ag? . ,.■ 0;
:.

:

stat_flag?

If stat_flag is set to 1 then statistics will be calculated for this run,
otherwise no. See Data Collection.

goal_stat_flag?

Assuming that stat_flag is set to 1 (so that statistics calculations are
enabled for this run), ISAAC will calculate various "proximity to goal"
statistics if goal_stat_flag = 1, otherwise no. Goal statistics include the
number of red and blue ISAACAs within range R=l,2,... 5 of the red
and blue flags. See Data Collection.

center_mass_flag?

Assuming that stat_flag is set to 1 (so that statistics calculations are
enabled for this run), ISAAC will calculate various "center-of-mass"
statistics if center_mass_flag = 1, otherwise no. Center-of-mass statistics
include keeping track of the (x,y) coordinates of the center-of-mass of
all red ISAACAs, all blue ISAACAs and all combined forces, as well as
distances between the center-of-mass of red and blue ISAACAs and
enemy flag. See Data Collection.

interpoint_flag?

Assuming that stat_flag is set to 1 (so that statistics calculations are
enabled for this run), ISAAC will calculate various "interpoint distance"
statistics if interpoint_flag = 1, otherwise no. Interpoint distance
statistics include keeping track of the distribution of distances between
red and red ISAACAs, blue and blue ISAACAs, red and blue ISAACAs,
red ISAACAs and blue flag, and blue ISAACAs and red flag. See Data
Collection.

entropy_flag?

Assuming that stat_flag is set to 1 (so that statistics calculations are
enabled for this run), ISAAC will keep track of the approximate spatial
entropy of the entire force disposition if entropy_flag = 1, otherwise no.

60

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Red, blue and total spatial entropy is calculated using 16 blocks of
20x20 sub-blocks, 64 blocks of 10x10 sub-blocks and 256 5x5 sub-blocks.
See Data Collection.

cluster_l_flag?

Assuming that stat_flag is set to 1 (so that statistics calculations are
enabled for this run), ISAAC will calculate the cluster-size distribution
(including ave +/- deviation) at each iteration step assuming an
inter-cluster distance criteria of D=l, otherwise no. See Data Collection.

cluster_2_flag?

Assuming that stat_flag is set to 1 (so that statistics calculations are
enabled for this run), ISAAC will calculate the cluster-size distribution
(including ave +/- deviation) at each iteration step assuming an
inter-cluster distance criteria of D=2, otherwise no. See Data Collection.

neighbors_flag?

Assuming that stat_flag is set to 1 (so that statistics calculations are
enabled for this run), ISAAC will calculate various "neighboring
ISAACA" statistics, otherwise no. Neighboring ISAACA statistics include
averages and deviations for the number of friendly, enemy and total
ISAACAs <= range R=l, 2,..., rs (including red in red, red in blue, blue
in blue, blue in red, all in red and all in blue). See Data Collection.

Blue Global Command Parameters

The Blue Global Command Parameters section of the input data file
consists of flags and variables defining blue's global command
personality. A sample fragment appears in figure 28. See Global
Command for a detailed discussion of all variables appearing in this
section.

BLUE_global_flag?

If blue_global_flag is set to 1 then a global commander will be used for
the blue ISAACAs during this run, otherwise there will be no global
commander (even if the other variables in this input section have valid
entries).

GC_fear_index

The GC's fear index, which is a number between 0 and 1, represents a
GC personality-defined tradeoff between wanting to simultaneously satisfy
two desires: moving LCs closer to the enemy flag and preventing them
from encountering too many enemy forces while doing so. If
GC_fear_index = 0, the GC is effectively fearless of the enemy; if
GC_fear_index = 1, the GC is maximally fearful of the enemy and

61

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

wishes only to keep LCs and their subordinate ISAACAs away from the
enemy. See Global Command.

GC_w_alpha

This is relative weight that the global commander assigns to the
density of alive enemy ISAACAs located within each of the three annular
subregions of the battlefield sectors. It is a number between 0 and 1.
See GC Command of Autonomous LC Movement.

Figure 28. Blue global command parameters

BLUE_g1oba1_flag 1
*
* direction parameters
*
GC_fear_index 1. :
GC_w_alpha 1.
GC_w_beta 1.
GGIfräc2R[i] .3
GC_frac_R[2] .6:
GCawiswaith"[I]: :.:,. : 1 /: ^

' GC_W™SWättl [3] ■ ■ :.;i 1 ,: :;:(";
: * . : .
* help parameters

GC_max_red_f 2.5
GC_he1p_radius 40
GC_h_thresh .1
GC_rel_h_thresh 1.5

GC_w_beta

This is relative weight that the global commander assigns to the
density of injured enemy ISAACAs located within each of the three
annular subregions of the battlefield sectors. It is a number between 0
and 1. See GC Command of Autonomous LC Movement.

GC_frac_R[l]

This defines the size of the first of the three annular subregions of the
battlefield sectors as the fraction (between 0 and 1) of the distance
between the (x,y) coordinates of a given local commander and the
way-point corresponding to a given sector. See GC Command of
Autonomous LC Movement.

GC_frac_R[2]

This defines the size of the second of the three annular subregions of the
battlefield sectors as the fraction (between 0 and 1) of the distance
between the (x,y) coordinates of a given local commander and the

62

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

way-point corresponding to a given sector. Note that ISAAC
automatically sets GC_frac_R[3] = 1- GC_frac_R[l] - GC_frac_R[2]. See
GC Command of Autonomous LC Movement.

GC_w_swath[l]

This is relative weight that the global commander assigns to the first of
the three annular subregions of the battlefield sectors; i.e., the sector
that is closest to the (x,y) coordinates of a given local commander. It is
a number between 0 and 1. See GC Command of Autonomous LC
Movement.

GC_w_swath[2]

This is relative weight that the global commander assigns to the second
of the three annular subregions of the battlefield sectors. It is a number
between 0 and 1. See GC Command of Autonomous LC Movement.

GC_w_swath[3]

This is relative weight that the global commander assigns to the third
of the three annular subregions of the battlefield sectors. It is a number
between 0 and 1. See GC Command of Autonomous LC Movement.

GC_max_red_f

This defines the maximum number of "allowable" enemy ISAACAs (as a
fraction of the initial number of friendly subordinates) within the local
command area; i.e., the "g" factor defined in the section GC Command of
LC-LC Interaction.

GC_help_radius

Defines the size of the box around a given subordinate local
commander within which that local commander can possibly assist
other local commanders. See GC Command of LC-LC Interaction.

GC_h_thresh

Defines the threshold health state for a local commander such that if
that local commander's actual health is greater than or equal to
GC_h_thresh, that local commander can then be ordered to "assist"
(i.e., move toward) another nearby local commander. It is a number
between 0 and 1. See GC Command of LC-LC Interaction.

GC_rel_h_thresh

Defines the relative fractional health threshold (=Dhthresh) between the
health states of local commanders LC; and LCj such that if the actual
relative fractional health Ajj > A/z^^, LC; can be ordered by the GC
to move toward (i.e., "assist") LC. See GC Command of LC-LC Interaction.

63

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Red Global Command Parameters

The Red Global Command Parameters section of the input data file
consists of flags and variables defining the red ISAACA force's global
command personality. Except for the fact that they obviously refer to
red rather than blue parameters, all entries in this section of the data
input file have exactly the same meaning as their blue counterparts,
defined above. See Global Command for a thorough discussion of how all
of these variables are used in the internal logic of the program.

Blue Local Command Parameters

The Blue Local Command Parameters section of the input data file
consists of flags and variables defining blue's local command
personality. A sample fragment appears in figure 29. See Local Command
for a detailed discussion of all variables appearing in this section.

Figure 29. Blue local command parameters

* BUIE: i:6eAL:;:C0HMAND;;;-PÄRÄMETERS~\

iS LÜE_cbihraänd_i^1 :a g: 1;;: i
numJ3LUE_comdrs 3

:B jjatch^type 1
B_patch_f1ag 2

local commander parameters

(l)_B_undr_cmd 15
{1)_B_cmnd^rad ; 2 ■:.
U)_B_SENSOR_rng 7

* local commander personality

U)_wl:alive_B 1.000000
(D_w2:aTive_R 5.000000
U)_w3:lnjrd_B 1.000000
{1)_w4:injrd_R 5.000000
U)_w5:8_goa1 0.000000
(D_w6:R_goal 10.000000

* local commander constraints

U)_B_THRS_ränge 4
(l)_ADVANCE_num 0
(l.)^CLUSTER_num 0:

: U)_COMBAT_num 5

local command weights

(l)_B_w_alpha 1.
U)_B_w_beta 1.
(l)_B_w_delta 1.
<1)_B_w^gamma 1.

*-global command weights

U)_w_ot>eyJJC_def 1.
(l)_w^help_LC_def .5

64

^reducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

BLUE_local_flag

If blue_local_flag is set to 1 then the local commander option will be
used for the blue ISAACAs during this run; If blue_local_flag = 0, there
will be no local commanders. An important point to remember is that if
this flag is set to 0 then all other entries in this section of data input file
must be removed.

num_BLUE_cmdrs

This defines the number of blue local commanders (between 1 and 10).
Note that all entries in this section that follow the subheading "local
commander parameters" and begin with (1) (i.e.,
(l)_B_undr_cmd, (l)_B_cmnd_rad, etc.) refer to parameter entries for
the 1st local commander. If num_BLUE_cmdrs > 1, then this entire
cluster of parameters beginning with (1) must be repeated, in
the same order, and with appropriate values, for each of the
num_BLUE_cmdrs local commanders. That is, the start of the
parameter cluster for the 2nd local commander (i.e., the entry
(2)_B_undr_cmd) must immediately follow the last entry for the 1st local
commander ((l)_w_help_LC_def; see below). The first value for the
parameter cluster for the 3rd local commander follows the last value for
the parameter cluster for the 2nd local commander, and so on.

B_patch_type

Recall that a local commander's "command area" may be partitioned
into either 3-by-3 or 5-by-5 blocks of smaller blocks. B_patch_type = 1
partitions this area into 3-by-3 sub-blocks; B_patch_type = 2 partitions
this area into 5-by-5 sub-blocks. See Local Command.

B_patch_flag

A "flag" that regulates how a local commander breaks a tie between two
or more sub-blocks that he calculates will incur the same "penalty" if he
orders his subordinate ISAACAs to move toward them. If B_patch_flag
= 1, the LC chooses a random sub-block out of this same-penalty set. If
B_patch_flag = 2, the sub-block that is chosen is the one nearest the
sub-block that was previously chosen.

(n)_B_undr_cmd

This parameter specifies the number of blue ISAACAs under the
command of the n* blue local commander. In the current version of
ISAAC, the maximum number of subordinate ISAACAs for one local
commander is 100.

(n)_B_cmnd_rad

This defines the "radius" of one of the sub-blocks that the n* blue local
commander's local command area is subdivided into. This area is

65

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

subdivided either into 3-by-3 subblocks (if B_patch_type = 1; see above)
or 5-by-5 blocks (if B_patch_type = 2). See Local Command.

(n)_B_SENSOR_rng

This defines the n* blue local commander's sensor range. As such, it
can be different from the sensor range of the local commander's
subordinate ISAACAs.

(n)_wl :alive_B

This defines the 1st component of the n* blue local commander's
personality weight vector. This first component represents the relative
weight afforded to moving toward alive blue (i.e., friendly) ISAACAs. It is
a number between 0 and 100. See Personality Weight Vector.

(n)_w2:alive_R

This defines the 2nd component of the n* blue local commander's
personality weight vector. This second component represents the
relative weight afforded to moving toward alive red (i.e., enemy)
ISAACAs. It is a number between 0 and 100. See Personality Weight
Vector.

(n)_w3:injrd_B

This defines the 3rd component of the n* blue local commander's
personality weight vector. This third component represents the relative
weight afforded to moving toward injured blue (i.e., friendly) ISAACAs.
It is a number between 0 and 100. See Personality Weight Vector.

(n)_w4:injrd_R

This defines the 4th component of the n* blue local commander's
personality weight vector. This fourth component represents the
relative weight afforded to moving toward injured red (i.e., enemy)
ISAACAs. It is a number between 0 and 100. See Personality Weight
Vector.

(n)_w5:B_goal

This defines the 5th component of the n* blue local commander's
personality weight vector. This fifth component represents the relative
weight afforded to moving toward the blue (i.e., friendly) goal. It is a
number between 0 and 100. See Personality Weight Vector.

(n)_w6:R_goal

This defines the 6th component of the n* blue local commander's
personality weight vector. This sixth component represents the relative
weight afforded to moving toward the red (i.e., enemy) goal. It is a
number between 0 and 100. See Personality Weight Vector.

66

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

(n)_B_THRS_range

This defines the n* blue local commander's threshold range. The
threshold range defines a boxed area surrounding the LC with respect
to which that LC computes the numbers of friendly and enemy
ISAACAs that play a role in determining what move to make on a given
time step. This local decision-making process is described in the section
ISAACA Adaptability.

(n)_ADVANCE_num

This defines the n01 blue local commander's advance threshold number,
which represents the minimal number of friendly ISAACAs that must be
within the threshold range (=(n)_B_THRS_range) for which the LC will
continue moving toward the enemy flag (if it has a nonzero weight to
do so). See Advance Constraint in ISAACA Adaptability.

(n)_CLUSTER_num

This defines the n* blue local commander's cluster threshold number,
which represents a friendly cluster ceiling such that if the LC senses a
greater number of friendly forces located within its threshold range
(=(n)_B_THRS_range), it will temporarily set its personality weights for
moving toward friendly ISAACAs (=(n)_wl:alive_B and (n)_w3:injrd_B)
to zero. See Cluster Constraint in ISAACA Adaptability.

(n)_COMBAT_num

This defines the n* blue local commander's combat threshold number,
which fixes the local conditions for which the LC will choose to move
toward or away from possibly engaging an enemy ISAACA. Intuitively,
the idea is that if the LC senses that it has less than a threshold
advantage of surrounding forces over enemy forces, it will choose to
move away from engaging enemy ISAACAs rather than moving toward
(and, thereby, possibly engaging) them. See Combat Constraint in
ISAACA Adaptability.

(n)_B_w_alpha

This defines the 1st of four local command weights that prescribe the
relative degree of importance the LC places on various measures of
relative information contained in each block of sites within his command
area. This first component represents the relative weight afforded to the
fractional difference between alive friendly and alive enemy ISAACAs
relative to the total number of friendly ISAACAs in each sub-block. See
Local Command.

(n)_B_w_beta

This defines the 2nd of four local command weights that prescribe the
relative degree of importance the LC places on various measures of

67

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

relative information contained in each block of sites within his command
area. This second component represents the relative weight afforded to
the fractional difference between alive friendly and injured enemy
ISAACAs relative to the total number of friendly ISAACAs in each
sub-block. See Local Command.

(n)_B_w_delta

This defines the 3rd of four local command weights that prescribe the
relative degree of importance the LC places on various measures of
relative information contained in each block of sites within his command
area. This third component represents the relative weight afforded to
the fractional difference between injured friendly and alive enemy
ISAACAs relative to the total number of friendly ISAACAs in each
sub-block. See Local Command.

(n)_B_w_garnma

This defines the 4th of four local command weights that prescribe the
relative degree of importance the LC places on various measures of
relative information contained in each block of sites within his command
area. This fourth component represents the relative weight afforded to
the fractional difference between injured friendly and injured enemy
ISAACAs relative to the total number of friendly ISAACAs in each
sub-block. See Local Command.

(n)_w_obey_GC_def

This defines the n* blue local commander's relative weight afforded to
obeying his GC's orders. It is a number between 0 and 1. See LC
Response to GC Commands.

(n)_w_help_LC_def

This defines the n* blue local commander's relative weight afforded to
moving toward and "assisting" another LC. It is a number between 0
and 1. See LC Response to GC Commands.

Red Local Command Parameters

The Red Local Command Parameters section of the input data file
consists of flags and variables defining the red ISAACA force's local
command personality. Except for the fact that they obviously refer to
red rather than blue parameters, all entries in this section of the data
input file have exactly the same meaning as their blue counterparts,
defined above. See Local Command for a thorough discussion of how all
of these variables are used in the internal logic of the program.

68

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Blue ISAACA Parameters

The Blue ISAACA Parameters section of the input data file consists of
flags and variables defining the blue ISAACAs. A sample fragment
appears in figure 30. See Overview of ISAAC for a detailed discussion of
all variables appearing in this section.

numjblues

This defines the total number of blue ISAACAs. The current version of
ISAAC limits this number to 400 or less.

squads

This defines the total number of blue squads. This is a number between
1 and a maximum of 10.

num_per_squad

This defines the number of blue ISAACAs per squad for each of the 10
possible squads. Note that all 10 entries must appear in the input file,
even if there are less than 10 squads (as defined by the squads
parameter above). There is an internal check on the sum of the squad
sizes that is performed by ISAAC to prevent possible overflow
conditions.

M_range

This defines the movement range, rM, for each of the 10 possible blue
ISAACA squads. Note that all 10 entries must appear in the input file,
even if there are less than 10 squads (as defined by the squads
parameter above). In the current version of ISAAC, rM can either be set
to equal 1 (meaning that ISAACAs choose there move from within a
3-by-3 box surrounding their current position) or rM can be set to equal
2 (meaning that ISAACAs choose there move from within a 5-by-5 box
surrounding their current position). See ISAACA Move Selection.

personality

This software "flag" specifies how the blue ISAACAs personality weight
vector anvill be determined. If personality = 1, then the components of
w are defined expliciüy by the appropriate parameter entries that
appear below (see entries wl_a:B_alive_B through w6_i:B_R_goal). If
personality = 2, then the components of zware randomly assigned. In
this case, each blue ISAACA is assigned a different random weight
vector.

69

0 0
2::2

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 30. Blue ISAACA Parameters

* BLUESISAACÄSPARAMETERS ;

^.numjjiües.-. s 100 ; S

, nurCper-iquatf ■ : 100: 15:23; 0 S0/S:0 Sio S:0
f-LSRANGE: ' : :; ::S 1SSS .-IS vil.; :.;S2V Ix,i; W*

: per son a-! ity:: ■ A '■ -V1:: .j:S:

/j.iÄÜiVf:persona1 i ty Weights ■:■;

: :wl a -IB: 31 t veliB-■:: ' S10 SO 10 J 0; S 76.6■§ 76 v0-:' 76 ?0:: 76 SO "i 76 SO "76.0:: 76; 0 Wi Ö':-
: wZS3SBjäliivessR^ s: 40S0 99"■ 6 : 61 SO S61 so:- 61.0 s?61'.0 S :61;S0 :61 SO : :61S0A ;61:OS
«3^3::feiinj rd_B ■:S iÖSOS : 0, 0 SO.0 i:-A.0: S>4SO ; :,4s0 "S -4SO :• 14SO :;-4.0 -4SO;
W4_a:B_in3:W_R : :: ■ 40.5 :99S5 ; ::76.0 S:76SOSS99S5 S "99S5SS76SO :■76SOS 76:0 S76s0 :
w5SaSS B_goa) ; :osO :0S0 S.S: 0.0; :: 0,0 SSOSÖS 0i0 SÖS0: SSÖSO 0.0 0.0:

;:W6_a:B_Rvgoa 1;■;: : SSj:5ÖSO :: 60,0 y:A7,0 %7,0 ■ :47S0.;: 47i0S;47SOV|3»7:S0;:; 47.047,0;:

* piJUREOpersona 1 i;tySweights:?;;S:S:

wl i :B;alive :B :• :.:■:' 10v0 76S0 ■-76S0 ■ 76.0■ ;-7.is■ fl: S76S0 76SO 76"-.0 76.0 S76.0'
:-w2'--ri:B^ii*€;R-::vs'-Msos-::«ii-0::'::6i:io'':::6-i;ö 6ß0 ;«1S0 61 SO 61:0> 61:0 61.0
-w3^i: Bill nj rd3 S : 10 SO ■:■ -4 SO S-4 SO SS-4 SO :-4 SO S S4 SO -4 .0 S4 SO -4 SO -4 .0
w4 S i: B^i ri j rdiR S- S 40 ::5 ; .99:5 j6. ö : ;:7 6 SO. S 99 SB w 99.5 76 ,0 S:: 7 6 SO S 76, OS 7 6. OS
w^i :B_B_gbal S:S -::: o:S0 OsO::: Ö.0 :-sO.OS :O;0...-:. SOSO sOSO 0:0 ;: 0^0 s: 0.0
w6Sj -B^R^goa): s: : sjo.o 47SÖ : J47S0 S::47:.:0 s 47,0 S47S0 S47 so 47::ö 47.0 47.o;

;.*■ ■: I »ACA--:tCi weight s ;>

: w7:Bssioc^cömdr :'":■-.ISÖO0OO0
iwStB^locSgoa! ; Sl.oöOOOOS:

;:* :defense iparameters S:':

tdefensesfUg ■■ : ■"■:l":-;s'
alive^stJ-engthS SS 1 Ssis :1S::IS Si 1 s-a si

■ iffävre'd^tr.e.ngth:;'
:::.:l;:;f:i;S;i;-:-::iS";.:r 1 si,:

:1;

!;■*! :.sensor/fire: ranges"::

:S5jRÄSGE;::"■':. S5:S;8 S7:::is:3s .3 S:3.S3:.'3 S3
;:FURA«SE"sj S: si: :S3 S4 3SS3' :3: 3 -;;3 :-3:S3 S3S

::?.^communications-: :

::CÖM«_fliö :.'■'¥ ;:0:;;;;:::
::CÖMM_ra)igeS:S si-Os' Ss
:; CÖMM^wei gtit; S: ■;;■;:SO.ÖO0OÖÖS ;

S>Sn>oyement Scon St«i nt s:' ;

::movementSfTag: SS si S
: TSRAN6E S sss:;;:ss:S 30-si 4 :i' 3sss;: 7:
SA-ÄDVANCE^nür :::: :0 S : 0 : : 0 SxlS
: Asd-UStEOum s: :5: s5: : 7 16s :16 s:i6:: :16::
vA:COM8AT_rium :S:S S3 : -5' :S-,1 S -Si: s:vi ;s :-is:S:-i
: I:: ADVANCER um : 0 S9 S9: : 9 S9 ::9 : 9
::JSCLltSTER_num :: S 8 :.: 9 s :9: .9 9::::S:9S :9
: I:COMBAT_nüm S:S5 -2 ::-16S:S-16 -16 : -16 -16

::T_RAf»SE_(in;«)s S.1,4s
SA-:AbV_(-in;-M) : 0,4 :
SAVCLUS_;(m,M> 1,8 S
:.A:COHB_(m,M) .-: :-:3.3-:: s;:
SI:AbV_(m,M) : S 0/4S S

I:CLUS^(m;M):S 1,8:
:I:C0MBj(m;M)S -3S3 ; S

A:B Bjiiin_dist: :ÖS0 : 0,0 0.0 0;0 0.0 O.o: 0.0 0.0 0.0 0.0
A::B_R_min_di:st OsO: 0.0 0.0 O.'O 0.0 0.0 0.0 0.0 0,0 0.0
A-B_B_goal_fiin 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ISB:B mitudist 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0

.I-:B_R_m'1n_dist 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
i:B_B_goar_min 0.0 0.0 0.0 O;0 0.0 0.0 0.0 0.0 0.0 0.0.

* combat/engagement

stiot_:prob 0.005 0.010 0.010 0.005 0.005 0.005 0.005 0,005 0.005 0.005
sB_inax_€hg_nuin ; 5 : : f 3' >" 2 /::Z >S :'--2 ■ ,:,2.\ <2 2. s; :

:2: 2 s

7::S::: 7
is: 'Si

:.-7, 7 :

Sis: l
16 :S;16 ::
:-:lSS: -1 :v
: 9S'S::9 :

9' : K9: S
16S-16 -

i6s:::ss

v :9:;,

0.0
0:0
oso:;
0.0

0.
:0

: 0
0

0
0
0
0

70

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

wl_a:B_alive_B

This defines the 1st component of the alive blue ISAACA's personality
weight vector. This first component represents the relative weight
afforded by alive bluelSAACAs to moving toward alive blue (i.e., friendly)
ISAACAs. It is a number between 0 and 100. (Recall that only the
relative values among all six components matter here: the set
{1,2,34,5,6} represents exactly the same set of weights as
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10
entries must appear in the input file, even if there are less than 10
squads (as defined by the squads parameter above). See Personality
Weight Vector.

w2_a:B_alive_R

This defines the 2nd component of the alive blue ISAACA's personality
weight vector. This second component represents the relative weight
afforded by alive blue ISAACAs to moving toward alive red (i.e., enemy)
ISAACAs. It is a number between 0 and 100. (Recall that only the
relative values among all six components matter here: the set
{1,2,3,4,5,6} represents exactly the same set of weights as
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10
entries must appear in the input file, even if there are less than 10
squads (as defined by the squads parameter above). See Personality
Weight Vector.

w3_a:B_injrd_B

This defines the 3rd component of the alive blue ISAACA's personality
weight vector. This third component represents the relative weight
afforded by alive blue ISAACAs to moving toward injured blue (i.e.,
friendly) ISAACAs. It is a number between 0 and 100. (Recall that only
the relative values among all six components matter here: the set
{1,2,3,4,5,6} represents exactly the same set of weights as
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10
entries must appear in the input file, even if there are less than 10
squads (as defined by the squads parameter above). See Personality
Weight Vector.

w4_a:B_injrd_R

This defines the 4th component of the alive blue ISAACA's personality
weight vector. This fourth component represents the relative weight
afforded by alive blue ISAACAs to moving toward injured red (i.e.,
enemy) ISAACAs. It is a number between 0 and 100. (Recall that only
the relative values among all six components matter here: the set
{1,2,3,4,5,6} represents exactly the same set of weights as
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10
entries must appear in the input file, even if there are less than 10

71

Irreducible Semi-Autonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

squads (as defined by the squads parameter above). See Personality
Weight Vector.

w5_a:B_B_goal

This defines the 5th component of the alive blue ISAACA's personality
weight vector. This fifth component represents the relative weight
afforded by alive blue ISAACAs to moving toward the blue (i.e., friendly)
goal. It is a number between 0 and 100. (Recall that only the relative
values among all six components matter here: the set {1,2,3.4,5,6}
represents exactly the same set of weights as {10,20,30,40,50,60}, as far as
ISAAC is concerned.) Note that all 10 entries must appear in the input
file, even if there are less than 10 squads (as defined by the squads
parameter above). See Personality Weight Vector.

w6_a:B_R_goal

This defines the 6th component of the alive blue ISAACA's personality
weight vector. This sixth component represents the relative weight
afforded by alive blue ISAACAs to moving toward the red (i.e., enemy)
goal. It is a number between 0 and 100. (Recall that only the relative
values among all six components matter here: the set {1,2,3,4,5,6}
represents exactly the same set of weights as {10,20,30,40,50,60}, as far as
ISAAC is concerned.) Note that all 10 entries must appear in the input
file, even if there are less than 10 squads (as defined by the squads
parameter above). See Personality Weight Vector.

wl_i:B_alive_B

This defines the 1st component of the injured blue ISAACA's personality
weight vector. This first component represents the relative weight
afforded by injured blue ISAACAs to moving toward alive blue (i.e.,
friendly) ISAACAs. It is a number between 0 and 100. (Recall that only
the relative values among all six components matter here: the set
{1,2,3,4,5,6} represents exactly the same set of weights as
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10
entries must appear in the input file, even if there are less than 10
squads (as defined by the squads parameter above). See Personality
Weight Vector.

w2_i:B_alive_R

This defines the 2nd component of the injured blue ISAACA's
personality weight vector. This second component represents the
relative weight afforded by injured blue ISAACAs to moving toward alive
red (i.e., enemy) ISAACAs. It is a number between 0 and 100. (Recall
that only the relative values among all six components matter here: the
set {1,2,3,4,5,6} represents exactly the same set of weights as
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10
entries must appear in the input file, even if there are less than 10

72

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

squads (as defined by the squads parameter above). See Personality
Weight Vector.

w3_i:B_injrd_B

This defines the 3rd component of the injured blue ISAACA's
personality weight vector. This third component represents the relative
weight afforded by injured blue ISAACAs to moving toward injured blue
(i.e., friendly) ISAACAs. It is a number between 0 and 100. (Recall that
only the relative values among all six components matter here: the set
{1,2,3,4,5,6} represents exacdy the same set of weights as
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10
entries must appear in the input file, even if there are less than 10
squads (as defined by the squads parameter above). See Personality
Weight Vector.

w4_i:B_injrd_R

This defines the 4th component of the injured blue ISAACA's
personality weight vector. This fourth component represents the
relative weight afforded by injured blue ISAACAs to moving toward
injured red (i.e., enemy) ISAACAs. It is a number between 0 and 100.
(Recall that only the relative values among all six components matter
here: the set {1,2,3,4,5,6} represents exactiy the same set of weights as
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10
entries must appear in the input file, even if there are less than 10
squads (as defined by the squads parameter above). See Personality
Weight Vector.

w5_i:B_B_goal

This defines the 5th component of the injured blue ISAACA's
personality weight vector. This fifth component represents the relative
weight afforded by injured blue ISAACAs to moving toward the blue (i.e.,
friendly) goal. It is a number between 0 and 100. (Recall that only the
relative values among all six components matter here: the set
{1,2,3,4,5,6} represents exacdy the same set of weights as
{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10
entries must appear in the input file, even if there are less than 10
squads (as defined by the squads parameter above). See Personality
Weight Vector.

w6_i:B_R_goal

This defines the 6th component of the injured blue ISAACA's
personality weight vector. This sixth component represents the relative
weight afforded by injured blue ISAACAs to moving toward the red (i.e.,
enemy) goal. It is a number between 0 and 100. (Recall that only the
relative values among all six components matter here: the set
{1,2,3,4,5,6} represents exactly the same set of weights as

73

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

{10,20,30,40,50,60}, as far as ISAAC is concerned.) Note that all 10
entries must appear in the input file, even if there are less than 10
squads (as defined by the squads parameter above). See Personality
Weight Vector.

w7:B_loc_comdr

If the blue local command option is enabled (i.e., if the parameter
blue_local_flag is set equal to 1), and a given blue ISAACA is under the
command of blue local commander, w7:B_loc_comdr effectively acts as
the 7th component of that blue ISAACA's personality weight vector. This
seventh component defines the relative weight afforded by a
subordinate blue ISAACA to staying close to its local commander. It is a
number between 0 and 1. See Subordinate ISAACAs under Local
Command.

w8:B_loc_goal

If the blue local command option is enabled (i.e., if the parameter
blue_local_flag is set equal to 1), and a given blue ISAACA is under the
command of blue local commander, w8:B_loc_goal effectively acts as
the 8th component of that blue ISAACA's personality weight vector. This
seventh component defines the relative weight afforded by a
subordinate blue ISAACA to obeying the orders issued by its local
commander. It is a number between 0 and 1. See Subordinate ISAACAs
under Local Command.

defense_flag

A software "flag" that regulates the notional defense option. If
defense_flag = 1, the defense option is enabled (and defined by the
parameters alive_strength and injured_strength below); if defense_flag
= 0, the defense option is disabled.

alive_strength

If the notional defense option is enabled (i.e., if defense_flag = 1), then
alive_strength defines the defensive strength of alive blue ISAACAs. The
value of this parameter equals the number of "hits" (either by enemy or,
if the fratricide option is enabled by setting blue_frat_flag = 1, friendly
fire) that it takes to degrade an alive blue ISAACA to an injured state.
The minimal (and default) value is 1. Setting alive_strength to a large
positive number effectively renders blue ISAACAs impervious to fire.
Note that all 10 entries must appear in the input file, even if there are
less than 10 squads (as defined by the squads parameter above). See
Notional Defense under ISAACA Combat.

injured strength

If the notional defense option is enabled (i.e., if defense_flag =1), then
injured_strength defines the defensive strength of injured blue

74

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

ISAACAs. The value of this parameter equals the number of "hits"
(either by enemy or, if the fratricide option is enabled by setting
blue_frat_flag = 1, friendly fire) that it takes to kill an already injured
blue ISAACA. The minimal (and default) value is 1. Setting
alive_strength to a large positive number effectively renders injured
blue ISAACAs impervious to fire. Note that all 10 entries must appear in
the input file, even if there are less than 10 squads (as defined by the
squads parameter above). See Notional Defense under ISAACA Combat.

S_range

This defines the sensor range, rs, for each of the 10 possible blue ISAACA
squads. Note that all 10 entries must appear in the input file, even if
there are less than 10 squads (as defined by the squads parameter
above). S_range can take on the value zero (in which case the ISAACA
"senses" nothing around itself) and any positive integer value. See
ISAACA Ranges.

F_range

This defines the fire range, rF, for each of the 10 possible blue ISAACA
squads. Note that all 10 entries must appear in the input file, even if
there are less than 10 squads (as defined by the squads parameter
above). F_range can take on the value zero (in which case the ISAACA
is unable to "shoot" at anything) and any positive integer value. See
ISAACA Ranges.

COMMjlag

This software "flag" regulates the communications option for blue
ISAACAs. If COMM_flag = 1, the communications option is enabled
(and defined by the parameters COMM_range and COMM_weight
below); if COMMJElag = 0, the communications option is disabled. See
Communication.

COMM_range

If the communications option is enabled (i.e., if COMMjlag =1), then
COMM_range defines the range of blue ISAACA communications. See
Communication.

COMM_weight

If the communications option is enabled (i.e., if COMM_flag =1), then
COMM_weight defines the relative weight afforded by blue ISAACAs to
using information communicated to them by other blue ISAACAs
(within a communications range COMMjrarige of their position) in
calculating their move selection penalty function. COMM_weight is
typically assigned a real value between 0 and 1, though values greater
than 1 can also be used to prescribe scenarios where blue ISAACAs give

75

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

greater weight to communicated information then to information
existing within their own sensor field. See Communication.

movement_flag

This software "flag" controls the use of constraint thresholds (see
ISAACA Adaptability). If movement_flag = 1, then additional
constraints (defined by the next seven parameter entries T_RANGE
through LCOMBATjnum) will be used. If movement_flag = 0, no
additional constraints will be used (and the next seven entries will
therefore be ignored for this run).

T_range

This defines the blue ISAACA's threshold range, rT; it can be assigned any
positive integer value. The threshold range defines a boxed area
surrounding the ISAACA with respect to which that ISAACA computes
the numbers of friendly and enemy ISAACAs that play a role in
determining what move to make on a given time step. This local
decision-making process is described in the section ISAACA Adaptability.

ArADVANCE_num

This defines the alive blue ISAACA's advance threshold number, which
represents the minimal number of friendly ISAACAs that must be
within the threshold range (= Tjrange) for which the blue ISAACA will
continue moving toward the enemy flag (if it has a nonzero default
weight to do so). Note that all 10 entries must appear in the input file,
even if there are less than 10 squads (as defined by the squads
parameter above). See Advance Constraint in ISAACA Adaptability.

A:CLUSTER_num

This defines the alive blue ISAACA's cluster threshold number, which
represents a friendly cluster ceiling such that if the blue ISAACA senses
a greater number of friendly forces located within its threshold range (=
T_range), it will temporarily set its personality weights for moving
toward friendly ISAACAs (wl_a:B_alive_B and w3_a:B_injrd_B if the
blue ISAACA is alive, and wl_i:B_alive_B and w3_i:B_injrd_B if the
blue ISAACA is injured) to zero. Note that all 10 entries must appear in
the input file, even if there are less than 10 squads (as defined by the
squads parameter above). See Cluster Constraint in ISAACA Adaptability.

ArCOMBATnum

This defines the alive blue ISAACA's combat threshold number, which fixes
the local conditions for which the blue ISAACA will choose to move
toward or away from possibly engaging an enemy ISAACA. Intuitively,
the idea is that if the blue ISAACA senses that it has less than a
threshold advantage of surrounding forces over enemy forces, it will
choose to move away from engaging enemy ISAACAs rather than

76

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

moving toward (and, thereby, possibly engaging) them. The value of
A:COMBAT_num must be a (positive or negative) integer. Note that all
10 entries must appear in the input file, even if there are less than 10
squads (as defined by the squads parameter above). See Combat
Constraint in ISAACA Adaptability.

LADVANCEnum

This defines the injured blue ISAACA's advance threshold number, which
represents the minimal number of friendly ISAACAs that must be
within the threshold range (= Tjrange) for which the blue ISAACA will
continue moving toward the enemy flag (if it has a nonzero default
weight to do so). Note that all 10 entries must appear in the input file,
even if there are less than 10 squads (as defined by the squads
parameter above). See Advance Constraint in ISAACA Adaptability.

I:CLUSTER_num

This defines the injured blue ISAACA's cluster threshold number, which
represents a friendly cluster ceiling such that if the blue ISAACA. senses
a greater number of friendly forces located within its threshold range (=
T_range), it will temporarily set its personality weights for moving
toward friendly ISAACAs (wl_a:B_alive_B and w3_a:B_injrd_B if the
blue ISAACA is alive, and wl_i:B_alive_B and w3_i:B_injrd_B if the
blue ISAACA is injured) to zero. Note that all 10 entries must appear in
the input file, even if there are less than 10 squads (as defined by the
squads parameter above). See Cluster Constraint in ISAACA Adaptability.

LCOMBATnum

This defines the injured blue ISAACA's combat threshold number, which
fixes the local conditions for which the blue ISAACA will choose to
move toward or away from possibly engaging an enemy ISAACA.
Intuitively, the idea is that if the blue ISAACA senses that it has less than
a threshold advantage of surrounding forces over enemy forces, it will
choose to move away from engaging enemy ISAACAs rather than
moving toward (and, thereby, possibly engaging) them. The value of
A:COMBAT_num must be a (positive or negative) integer. Note that all
10 entries must appear in the input file, even if there are less than 10
squads (as defined by the squads parameter above). See Combat
Constraint in ISAACA Adaptability.

T_RANGE_(m,M)

These two values (m,M) define the lower (=m) and upper (=M) limits
of the interval of values within which the blue ISAACA's threshold range,
rT, will be assigned a random positive integer value. These parameter
settings are used only if (1) the personality flag personality is set equal
to one (so that the blue ISAACAs are assigned random personality
weight vectors), and (2) the movement flag movement_flag is set equal

77

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

to 2 (so that blue ISAACA personalities are augmented by additional
constraints). The threshold range defines a boxed area surrounding the
ISAACA with respect to which that ISAACA computes the numbers of
friendly and enemy ISAACAs that play a role in determining what move
to make on a given time step. This local decision-making process is
described in the section ISAACA Adaptability.

AiADV_(m,M)

These two values (m,M) define the lower (=m) and upper (=M) limits
of the interval of values within which the alive blue ISAACA's advance
threshold number will be assigned a random positive integer value. These
parameter settings are used only if (1) the personality flag personality is
set equal to one (so that the blue ISAACAs are assigned random
personality weight vectors), and (2) the movement flag movement_flag
is set equal to 2 (so that blue ISAACA personalities are augmented by
additional constraints). The advance threshold number represents the
minimal number of friendly ISAACAs that must be within the threshold
range (= Tjrange) for which the blue ISAACA will continue moving
toward the enemy flag (if it has a nonzero default weight to do so). See
Advance Constraint in ISAACA Adaptability.

A:CLUS_(m,M)

These two values (m,M) define the lower (=m) and upper (=M) limits
of the interval of values within which the alive blue ISAACA's cluster
threshold number will be assigned a random positive integer value. These
parameter settings are used only if (1) the personality flag personality is
set equal to one (so that the blue ISAACAs are assigned random
personality weight vectors), and (2) the movement flag movement_flag
is set equal to 2 (so that blue ISAACA personalities are augmented by
additional constraints). The cluster threshold number represents a
friendly cluster ceiling such that if the blue ISAACA senses a greater
number of friendly forces located within its threshold range (=
Tjrange), it will temporarily set its personality weights for moving
toward friendly ISAACAs (wl_a:B_alive_B and w3_a:B_injrd_B if the
blue ISAACA is alive, and wl_i:B_alive_B and w3_i:B_injrd_B if the
blue ISAACA is injured) to zero. See Cluster Constraint in ISAACA
Adaptability.

A:COMB_(m,M)

These two values (m,M) define the lower (=m) and upper (=M) limits
of the interval of values within which the alive blue ISAACA's combat
threshold number will be assigned a random integer value. These
parameter settings are used only if (1) the personality flag personality is
set equal to one (so that the blue ISAACAs are assigned random
personality weight vectors), and (2) the movement flag movement_flag
is set equal to 2 (so that blue ISAACA personalities are augmented by
additional constraints). , which fixes the local conditions for which the

78

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

blue ISAACA will choose to move toward or away from possibly
engaging an enemy ISAACA. Intuitively, the idea is that if the blue
ISAACA senses that it has less than a threshold advantage of
surrounding forces over enemy forces, it will choose to move away from
engaging enemy ISAACAs rather than moving toward (and, thereby,
possibly engaging) them. The values of 'm' and 'M' must be a (positive
or negative) integers. See Combat Constraint in ISAACA Adaptability.

I:ADV_(m,M)

These two values (m,M) define the lower (=m) and upper (=M) limits
of the interval of values within which the injured blue ISAACA's advance
threshold number-will be assigned a random positive integer value. These
parameter settings are used only if (1) the personality flag personality is
set equal to one (so that the blue ISAACAs are assigned random
personality weight vectors), and (2) the movement flag movement_flag
is set equal to 2 (so that blue ISAACA personalities are augmented by
additional constraints). The advance threshold number represents the
minimal number of friendly ISAACAs that must be within the threshold
range (= T_range) for which the blue ISAACA will continue moving
toward the enemy flag (if it has a nonzero default weight to do so). See
Advance Constraint in ISAACA Adaptability.

I:CLUS_(m,M)

These two values (m,M) define the lower (=m) and upper (=M) limits
of the interval of values within which the injured blue ISAACA's cluster
threshold numberwill be assigned a random positive integer value. These
parameter settings are used only if (1) the personality flag personality is
set equal to one (so that the blue ISAACAs are assigned random
personality weight vectors), and (2) the movement flag movement_flag
is set equal to 2 (so that blue ISAACA personalities are augmented by
additional constraints). The cluster threshold number represents a
friendly cluster ceiling such that if the blue ISAACA senses a greater
number of friendly forces located within its threshold range (=
T_range), it will temporarily set its personality weights for moving
toward friendly ISAACAs (wl_a:B_alive_B and w3_a:B_injrd_B if the
blue ISAACA is alive, and wl_i:B_alive_B and w3_i:B_injrd_B if the
blue ISAACA is injured) to zero. See Cluster Constraint in ISAACA
Adaptability.

I:COMB_(m,M)

These two values (m,M) define the lower (=m) and upper (=M) limits
of the interval of values within which the injured blue ISAACA's combat
threshold number will be assigned a random integer value. These
parameter settings are used only if (1) the personality flag personality is
set equal to one (so that the blue ISAACAs are assigned random
personality weight vectors), and (2) the movement flag movement_flag
is set equal to 2 (so that blue ISAACA personalities are augmented by

79

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

additional constraints). , which fixes the local conditions for which the
blue ISAACA will choose to move toward or away from possibly
engaging an enemy ISAACA. Intuitively, the idea is that if the blue
ISAACA senses that it has less than a threshold advantage of
surrounding forces over enemy forces, it will choose to move away from
engaging enemy ISAACAs rather than moving toward (and, thereby,
possibly engaging) them. The values of 'm' and 'M' must be a (positive
or negative) integers. See Combat Constraint in ISAACA Adaptability.

A:B_B_min_dist

This defines the alive blue ISAACAs blue-blue minimum distance
constraint, which represents the minimal distance that an alive blue
ISAACA wants to maintain away from each blue (i.e., friendly) ISAACA
in its sensor field. A:B_B_min_dist must be set equal to either zero (for
no constraint) or to some positive integer value. Note that all 10 entries
must appear in the input file, even if there are less than 10 squads (as
defined by the squads parameter above). See Minimum Local-Distance
Constraints in ISAACA Adaptability.

A:B_R_min_dist

This defines the alive blue ISAACAs blue-red minimum distance constraint,
which represents the minimal distance that an alive blue ISAACA wants
to maintain away from each red (i.e., enemy) ISAACA in its sensor field.
A:B_R_min_dist must be set equal to either zero (for no constraint) or
to some positive integer value. Note that all 10 entries must appear in
the input file, even if there are less than 10 squads (as defined by the
squads parameter above). See Minimum Local-Distance Constraints in
ISAACA Adaptability.

AiB_B_goal_min

This defines the alive blue ISAACAs blue/blue-goal minimum distance
constraint, which represents the minimal distance that an alive blue
ISAACA wants to maintain away from the blue (i.e., friendly) goal.
A:B_B_goal_min must be set equal to either zero (for no constraint) or
to some positive integer value. Note that all 10 entries must appear in
the input file, even if there are less than 10 squads (as defined by the
squads parameter above). See Minimum Local-Distance Constraints in
ISAACA Adaptability.

I:B_B_rnin_dist

This defines the injured blue ISAACAs blue-blue minimum distance
constraint, which represents the minimal distance that an alive blue
ISAACA wants to maintain away from each blue (i.e., friendly) ISAACA
in its sensor field. I:B3_adn_dist must be set equal to either zero (for
no constraint) or to some positive integer value. Note that all 10 entries
must appear in the input file, even if there are less than 10 squads (as

80

Irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

defined by the squads parameter above). See Minimum Local-Distance
Constraints in ISAACA Adaptability.

I:B_R_min_dist

This defines the injured blue ISAACA's blue-red minimum distance
constraint, which represents the minimal distance that an alive blue
ISAACA wants to maintain away from each red (i.e., enemy) ISAACA in
its sensor field. I:B_R_min_dist must be set equal to either zero (for no
constraint) or to some positive integer value. Note that all 10 entries
must appear in the input file, even if there are less than 10 squads (as
defined by the squads parameter above). See Minimum Local-Distance
Constraints in ISAACA Adaptability.

I:B_B_goal_min

This defines the injured blue ISAACA's blue/blue-goal minimum distance
constraint, which represents the minimal distance that an alive blue
ISAACA wants to maintain away from the blue (i.e., friendly) goal.
I:B_B^oal_min must be set equal to either zero (for no constraint) or
to some positive integer value. Note that all 10 entries must appear in
the input file, even if there are less than 10 squads (as defined by the
squads parameter above). See Minimum Local-Distance Constraints in
ISAACA Adaptability.

shot_prob

This defines the blue ISAACA's single-shot probability, p^, which
represents the probability that a targeted enemy ISAACA is "hit." It is a
number between 0 and 1. Note that all 10 entries must appear in the
input file, even if there are less than 10 squads (as defined by the
squads parameter above). See ISAACA Combat.

B_max_eng_num

This defines the maximum number of simultaneously targetable red
(i.e., enemy) ISAACAs by a blue ISAACA. If the number of targetable
enemy ISAACAs within a blue ISAACA's sensor field is less than
B_max_eng_num, the value of B_max_eng_num has no effect. If there
are a greater number of targetable enemy ISAACAs within a blue
ISAACA's sensor field than B_max_eng_num, then B_max_eng_num of
them will be randomly targeted. Note that all 10 entries must appear in
the input file, even if there are less than 10 squads (as defined by the
squads parameter above). See ISAACA Combat.

Red ISAACA Parameters

The Red ISAACA Parameters section of the input data file consists of
flags and variables defining red ISAACAs. Except for the fact that they
obviously refer to red rather than blue parameters, all entries in this

81

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

section of the data input file have exactly the same meaning as their
blue counterparts, defined in Blue ISAACA Parameters section above.

Terrain Parameters

The last section of the data input file contains parameters defining the
notional terrain to be used for a given run (see figure 31). Note that
this section consists of as many triplets of the form 'fa)-»26'
(n)_center_x, and (n)_center_y' (where n = 1, 2, 3, and so on) as there
are individual terrain blocks. For a discussion of how notional terrain is
incorporated into ISAAC, see Notional Terrain.

Figure 31. Terrain parameters

(l)_size 2
(l)_center_x 32
(l)_center_y 50
(2)^size 2
(2)_center_x 44
(2)_center^y 44
(3)_size ' 2
(3)_center_x 58
(3)_center_y 50
(4)_size 2
:(4)_centerix '54 ■■■.
(4)_center_y 58 ■■■.,■:.:■
(5)_size 4
(5)_center-x 42
:(5)_Center^y:':54 ■::■■■■..:

(n)_size

This defines the linear side dimension of the n* terrain block. It can be
assigned any positive integer value.

(n)_center_x

This defines the x-coordinate of the center of the n* terrain block (x=l
defines the extreme left-hand-side of the notional battlefield).
(n)_center_x can be assigned any positive integer value.

(n)_center_y

This defines the y-coordinate of the center of the n* terrain block (y=l
defines the bottom edge of the notional battlefield). (n)_center_y can
be assigned any positive integer value.

82

Irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Graphics Display

Once the user has selected the form of output (to screen, file or both;
see figure 24), ISAAC runs through its initialization routine and displays
the main graphics page showing the disposition of forces on the
notional battlefield.

A sample graphics page is shown in figure 32. Observe that there are
five main parts to the display:

• A battlefield region, located at the center of the display, which
contains a graphic representation of activity taking place on the
notional battlefield. All ISAACAs are color coded: alive red
ISAACAs are colored dark red, injured red ISAACAs are light
red, alive blue ISAACAs are dark blue, injured blue ISAACAs are
light blue and the red and blue flags appear as a solid large dark
red and dark blue disks, respectively. A "time" counter (that
shows the current iteration step) appears at the center bottom of
the battlefield region.

• A banner-display region, located at the top of the battlefield, which
identifies the program and release version, the data file that is
currendy open (on the left) and the size of the notional
batdefield (on the right).

• A red ISAACA data region, appearing to the left of the batdefield,
which contains information summarizing the red ISAACA force
(see below)

• A blue ISAACA data region, appearing to the left of the batdefield,
which contains information summarizing the blue ISAACA force
(see below)

• A "hot-key" menu region, appearing at the bottom of the
batdefield, which contains a menu of "hot keys" that the user can
use to interrupt a run at any time to perform a variety of
functions (see below)

83

^reducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Q.
CO

CO
O

JC
Q.
03 u-
O)

c
"(0

E
CO

Ö

CO

CN
CO

<D
L-
3
O)

u_

^

% 9-

CD
m

w

pa

LD en i-i en es

ii ii ii n
0) CD 0} S3 0)
8) 5) S3 8) 5!
s s c s s
IÖ tJ © 'S flJ

I I I I I
t/5 U-, 3E B- O

S>
^

^ <~\
N N

CS CD CO CS

w w
CS CS
If) — If) «

N X
\ CS \ CS
CS CS CS CS
Lf) <H m »-1

w ■^

Ü
(6

" -P

CCM
• E

o

c
o
I.
CD
>

Ü
<

<
tn

■P

■I 1 ■
■ ■ ■
■ * ■ ■ ■ 1 ■ ■ ■ ■ ■ ■ ■

■ ■
«■■ ■

■ ■

CS

CS
CS

Q
w
as

ix) en IH ID cs

II II n II II

0) CD CU 0) CD
Ü) S) S3 S) O
£ C C C E
tfS 'Ö !Ö t(US
U S» 1« S- (H
I I I I I

on ih £ (- c_>

LD
cs in IH
CS

cs' II ^

II
. CJ
0 e-i

toxh
1 «c w

II *->

CSD QD CD S) CS 'S
iH ^< r-l V tf)

C/)
6-H CS CS CS CS CS CS
x IH ^ TH v m
u

4* en co cs cs

en en cs cs cs

w II II II II II II
i Kpaasnuu

a, <r CE >-< i-i PC PB

84

II

:>
II II II II

WHSS,
a>jn ll
SUUKfl

s
rl CS

II II

E *

*n
K «

CS CS

cs
03 /s
iH X
X CS
CS cs
CS TH

cs cs

cs

\ CS
CS cs
CS i-t

■ts
Iti
s
0

V)

t)
U
IS
«4
H

&
+>
(A

e
s
«

I
a
K

3
O

u
«
I

IS

M
C e

'!"4

•P
9
O

iS

»
o
»5
CJ

■P
O
X
«
a
IS
c
to

■p «

«6
■p
*
a
•V c
IS
E
£
O
u
0)
3
H
«

«
■P

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

ISAACA Data Regions

The ISAACA data regions, located to the left and right of the battlefield
shown in figure 32, summarize the parameters that define the red and
blue ISAACAs. As the labels to the right of the blue ISAACA data region
show, data appearing in these regions are generally clustered in groups
according to the kind of information they represent. From top to
bottom, there are eight such data fields:

• Squad Identifier

• Range Parameters

• Offensive/Defensive Parameters

• Personality Weight Vector

• Constraint Parameters

• Reconstitution

• Fratricide

• Attrition

Squad Identifier

The squad identifier field is the first line above the colored bar that
appears at the top of the red and blue ISAACA data regions.

In figure 32, the red squad identifier is the line RED[1]: 100, while
the blue squad identifier is the BLUE[1]: 50. This field conveys three
pieces of information: (1) the color of the side (red ISAACA parameter
values appear always on the left; blue ISAACA parameter values on the
right); (2) the number of the particular squad (between 1 and 10)
whose parameter values currently appear on screen; and (3) the size of
that squad (i.e., the number of ISAACAs that initially made up that
squad). Assuming that one or both sides consist of more than one
squad, sets of parameter values corresponding to other squads may be
displayed at any time during a run by pressing either the 'B' (for Blue)
or 'E' (for rEd) "hot-keys"; see On-the-Fly Parameter Changes.

Range Parameters

The second data field consists of the set of ISAACA range parameters
(see the section ISAACA Ranges for a detailed discussion):

• S-range = sensor range, rs

• F-range = fire range, rF

• M-range = movement range, rM

85

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• T-range = threshold range, rT

• C-range = communications range, rc

Offensive/Defensive Parameters

The third data field consists of parameters defining an ISAACA's
notional offensive and defensive capabilities (see the section ISAACA
Combat for a detailed discussion):

• p-shot = single-shot probability

• MAX TGT = maximum number of simultaneously targetable
enemy ISAACAs

• DEF = defensive strength

Note that DEF contains data in two columns: the first column defines
the notional defensive strength for alive ISAACAs; the second column
defines the defensive strength for injured ISAACAs.

Personality Weight Vector

The fourth data field (labeled P-WEIGHTS in figure 32) consists of
parameters defining an ISAACA's personality weight vector (see the
section ISAACA Personality for a detailed discussion):

• AR = relative weight for moving toward Alive Red ISAACAs

• AB = relative weight for moving toward Alive Blue ISAACAs

• IR = relative weight for moving toward Injured Red ISAACAs

• IB = relative weight for moving toward Injured Blue ISAACAs

• RG = relative weight for moving toward Red Goal

• BG = relative weight for moving toward Blue Goal

Note that, as for the notional defense parameter DEF (see above), the
personality data field contains data in two columns: the first column (on
the left) defines a given component of the personality weight vector for
alive ISAACAs; the second column (on the right) defines the defensive
strength for injured ISAACAs.

Constraint Parameters

The fifth data field consists of the constraint parameters that augment
an ISAACAs default personality (see the section ISAACA Adaptability for
a detailed discussion):

86

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• ADV = advance number threshold

• CLS = cluster threshold

• CBT = combat threshold

• B_M = Minimal distance from Blue ISAACAs

• R_M = Minimal distance from Red ISAACAs

If the user constrains either red or blue ISAACAs from maintaining a
prescribed minimum distance from own goal, one additional parameter
may appear in this data field: G_M = Minimal distance from own Goal).

Note that, as for the notional defense parameter DEF and parameters
appearing in the personality field (see above), the constraint
parameters data field contains data in two columns: the first column
(on the left) defines a given component of the personality weight vector
for alive ISAACAs; the second column (on the right) defines the
defensive strength for injured ISAACAs.

Reconstitution

The sixth data field consists of a single entry, R_time, that defines the
reconstitution time for red or blue ISAACAs.

Recall that if the reconstitution flag reconst_flag is set equal to 1 (see
General Battle Parameters of Contents of Data Input File), then the
reconstitution time defines the number of iteration steps following a
"hit" (either by enemy or friendly ISAACAs) such that if during that
time interval a given ISAACA is not hit again, that ISAACAs state is
reconstituted back to alive. See Reconstitution in ISAACA Combat.

Fratricide

The seventh data field consists of a single entry - either R_frat for red
ISAACAs or B_frat for blue ISAACAs - that displays the cumulative
number of fratricide hits that have occurred up to the current iteration
step.

Note that the red and blue fratricide data fields appear in the display
only if the appropriate software flag (red_frat_flag for red and
red_frat_flag for blue; see General Battle Parameters of Contents of Data
Input File) has been set to "turn on" either the red or blue fratricide
option.

Attrition

The eighth, and bottom-most, data field, is essentially a "tally-board"
that keeps track of the remaining number (in gross and relative terms)

87

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

of either red or blue ISAACAs. A sample fragment, with explanatory
text, is reproduced in figure 33 below.

Figure 33. The Attrition data field of ISAAC'S main graphics display

„i-r „J„ (nr color code for
£!£££* ^, ALIVE INJURED ^ injured ISAACAS

alive/squad-n r 50/ 50 0 ■» # injured/squad-n
fraction alive | (100%) (0%) J fraction injured

alive/all squads «■ 50/ 50 0 ■» # injured/all squads
fraction alive < (100%) (0%) J fraction injured

I ii

"Hot-Key" Menu

The colored words at the bottom of the battlefield comprise a menu of
(black-colored) "hot keys"17 that the user can use to interrupt a run at
any time to perform a variety of functions. There are sixteen such
functions, accessed by the following keys (and defined according to the
order in which they appear, left to right, on screen):

• "A" (for StAts): toggles the calculation of statistics (see Data
Collection). What specific data are accumulated depends on what
statistic "flags" are set in ISAAC'S data input file (see Statistics
Parameters in Contents of Input Data File).

• "B" (for Blue): increments the squad number (if blue consists of
more than one squad) and displays the squad's defining
parameters in the blue ISAACA data region (to the right of the
notional battlefield).

• "C" (for Command): toggles various views of the local and/or
global command structures for both red and blue ISAACAs.
Assuming red and blue ISAACAs have both global and local
commanders, then by default no command structure is initially
shown on-screen. However, successive presses of the "C" key has
the following effects:

• 1st press: highlights each of the local commanders, using
yellow for red and white for blue

17 On a computer screen, the "hot-keys" are actually highlighted yellow instead of
black. Keep in mind that because the colors white and black (the "background" color
on the computer screen) have, for printing purposes, been reversed, not all colors
appearing in graphics reproductions in this report and their actual computer screen
counterparts match exactly.

88

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• 2nd press: highlights each of the local commanders + draws
the appropriate "boxed" local command area around each
local commander (see Local Command)

• 3rd press: highlights each of the local commanders + draws
links between each local commander and each of its
subordinate ISAACAs

• 4th press: highlights each of the local commanders +
highlights each local commander's subordinates + draws the
appropriate "boxed" local command area around each local
commander

• 5th press: highlights each of the local commanders + draws
links between each local commander and each of its
subordinate ISAACAs + draws the appropriate "boxed" local
command area around each local commander

• 6th press: highlights each of the local commanders +
highlights each local commander's subordinates + draws
links between each local commander and each of its
subordinate ISAACAs

• 7th press: same as 6th strike + draws the appropriate "boxed"
local command area around each local commander

• 8th press: same as 7th + draws links between each local
commander (explicitly showing their "connectivity" via the
global commander)

• "D" (for Data): toggles an on-screen prompt to interactively run
another ISAAC data input file.

• "E" (for REd): increments the squad number (if red consists of
more than one squad) and displays the squad's defining
parameters in the red ISAACA data region (to the left of the
notional battlefield).

• "F" (for Fast): enables the fast run mode, in which the screen is
updated as rapidly as possible. For slowly single-stepping through
a run, use the "S" hot-key (see below).

• "H" (for SnapsHot): toggles an on-screen prompt to name an
*.out file for storing a "snapshot" view of the current batde state
of the system. This *.out file can then be "played-back" (i.e.,
re-displayed) by pressing the "P" hot-key (see below).

• "L" (for CLose): closes all statistics files and stops all further data
collection (see Data Collection). Data collection may be restarted
by pressing "A" hot-key (see above).

89

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• "Jsj»* (for RaNd): reinitializes the current run (as defined by
entries made during an on-screen prompt session or via an input
data file) with a random spatial distribution of all forces.

• "O" (for Options): enables on-screen prompts for making
on-the-fly changes to the values of any (or all) of the parameters
defining the battle dynamics and/or red and blue ISAACAs. For
details see On-the-Fly Parameters Changes.

• "P" (for Play-Back): toggles an on-screen prompt to enter the
name of an *.out file to "play-back" at high speed. See Play-Back
of '*. out Files.

• "Q" (for Quit): quits back to main menu, from which the user
can select to either read-in a new data input file, play-back an
*.out file or quit the program.

• "R" (for Re-Run): reinitializes the current run (as defined by
entries made during an on-screen prompt session or via an input
data file) with exactly the same spatial distribution of all forces as
the first time the current run was initialized. To randomize this
initial distribution, use the "N" hot-key (see above).

• "S" (for Step): enables the single-step run mode, in which the
screen is updated a single iteration step at a time, each time the
"S" hot-key is pressed. For a continuous (or fast) update, use the
"F" hot-key (see above).

• "T" (for Trace): toggles a continuous trace of red and blue
movement. That is to say, old ISAACA positions are not erased as
ISAACAs move throughout the battlefield. Such traces
sometimes facilitate the visual detection of certain developing
patterns.

. • "U" (for SqUad): toggles a color highlighter (yellow for red,
white for blue) for ISAACAs belonging to the particular squad
whose parameters are currently displayed in the appropriate
ISAACA data regions. See "B" and "E" hot-keys above.

On-the-Fly Parameter Changes

During an interactive run (i.e., a run that is initialized with a full data
file such as ISAAC.dat instead of a simple playback of a previously
recorded *.out file), the user can press the "O" hot-key at any time to
interrupt the run and make on-the-fly changes to the values of any (or
all) of the parameters defining the battle dynamics and/or red and blue
ISAACAs. For example, the consequences to the unfolding pattern of
behavior on the battiefield of altering the blue force's aggressiveness

90

^reducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

and/or changing red's predisposition for "helping" injured friendly
forces can - by changing the values of the appropriate parameters - be
immediately displayed on screen.

Enabling this On-the-Fly Parameter Change option by pressing the "O" key
displays a menu of eight categories of changes that can be made (see
figure 34).

Figure 34. Main menu of the "on-the-fly" parameter change option

PARAMETER CHANGE CATEGORIES

<1> Combat Parameters
<2> Red 1SAACA Parameters
<3> Blue ISAACA Parameters
<4> Red Local Command Parameters
<5> Blue Local Command Parameters
<6> Red Global Command Parameters
<7> Blue Global Command Parameters
<8> Statistics Calculations

Selection (Quit = 0) ?

Each category is accessed by pressing the appropriate number - "1" (for
Combat Parameters) through "8" (for Statistics Calculations) - followed
by <ENTER>, and contains a more specific list of parameters whose
values can be changed on-the-fly. These are described in more detail
below.

Pressing zero (i.e., "0") from this main menu exits the menu, then
queries the user if the altered parameter values should be included in a
new ISAAC *.dat file. If the answer is "yes", the user is prompted for a
new input data file name (the currently open data file can also be
over-written). If the set of parameters whose values were changed
during this session is such that the run must be restarted (parameters
such as the size of the battlefield and the number of red and/or blue
ISAACAs are in this category), then ISAAC reinitializes the current run
and displays the main graphics screen (see figure 23). Otherwise, if the
run can be smoothly continued from the point at which it was
interrupted by the "O" key (but with new parameter values in place -
ISAACA personality weight vectors, constrain thresholds, sensor and/or
fire ranges, etc. all belong in this category of parameter values), ISAAC
first queries the user whether such a continuation is desired, or whether
the user nonetheless wishes to restart the run using the new parameter

91

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

values. If the user selects to restart the run rather than to continue the
old one, ISAAC queries whether the user wants to restart using the
original spatial distribution of red and blue forces (i.e., effectively using
the "old" random number seed) or wishes to select a new random
number seed to initialize the run.

Figure 35. Screen shot of the "on-the-fly" Combat Parameter change
sub-menu

COMBAT PARAMETERS

<1> Size of Battlefield
<2> Initial Distribution of Forces
<3> Termination Condition
<4> Move Sampling Order
<5> Combat Adjudication
<6> Reconstitution
<7> Terrain
<8> Goal Positions
<9> Fratricide

Selection (Quit = 0) ?

Combat Parameters

Pressing the "1" key (followed by <ENTER>) from the main menu that
appears after interrupting a run by pressing the "O" hot-key, displays a
sub-menu containing nine combat-related parameter choices (see
figure 35):

• </> Size of Battlefield, which prompts the user to adjust the size of
the notional batüefield.

• <2> Initial Distribution of forces, which prompts the user to define
a new initial configuration.

• <3> Termination Condition, which prompts the user to choose a
new termination condition.

• <4> Move Sampling Order, which prompts the user to select a new
sampling order (fixed or random sampling; see Move Sampling
Order).

92

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• <5> Combat Adjudication, which prompts the user to specify the
maximum number of simultaneously targe table enemy ISAACAs.

• <6> Reconstiiution, which prompts the user to decide whether the
reconstitution option will be used. If "yes", then the user is
further prompted for red and blue reconstitution times; see
ISAACA Reconstitution.

• <7> Terrain, which prompts the user to decide whether the
terrain option will be used. If "yes", then the user is further
prompted for terrain block sizes and positions; see Terrain.

• <8> Goal Positions, which prompts the user to select new red and
blue goal positions

• <9> Fratricide, which prompts the user to decide whether the
fratricide option will be used. If "yes", then the user is further
prompted for red and blue fratricide radii and fratricide
probability of hit; see ISAACA Fratricide.

The user can change the value of as many parameters as desired. When
finished, pressing zero (follows by <ENTER>) returns the user to the
main On-the-Fly Parameter Change menu.

Red ISAACA Parameters

Pressing the "2" key (followed by <ENTER>) from the main menu that
appears after interrupting a run by pressing the "O" hot-key, displays a
sub-menu containing 27 red-ISAACA-related parameter choices:

• <1> Number of Red Forces, which prompts the user to adjust the
number of red ISAACAs. If there are more than one squad, the
user is prompted to adjust the size of each squad and/or alter
the number of squads.

• <2> Movement Range, which prompts the user to select the
movement range (either "1" or "2").

• <3> Personality, which prompts the user to set the personality flag
(either 1 for user-defined, or 2 for random). If the user-defined
option is selected, the user is prompted for the values of the
components of red's personality weight vector; see ISAACA
Personalities).

• <4> Weight Wj, which prompts the user to enter a value for red's
alive and injured weights for moving toward alive red.

• <5> Weight w2, which prompts the user to enter a value for red's
alive and injured weights for moving toward alive blue.

93

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• <6> Weight w3, which prompts the user to enter a value for red's
alive and injured weights for moving toward injured red.

• <7> Weight w4, which prompts the user to enter a value for red's
alive and injured weights for moving toward injured blue.

• <8> Weight w5, which prompts the user to enter a value for red's
alive and injured weights for moving toward red goal.

• <9> Weight w6, which prompts the user to enter a value for red's
alive and injured weights for moving toward blue goal.

• <10> Weight Wy, which prompts the user to enter a value for red's
weight for moving toward the local commander (if the local
commander option is set; see Local Command in Contents of Input

Data File).

• <1I> Weight Wg, which prompts the user to enter a value for red's
weight for obeying its local commander (if the local commander
option is set; see Local Command in Contents of Input Data File).

• <12> Sensor Range, which prompts the user to enter a value for
red's sensor range.

• <13> Fire Range, which prompts the user to enter a value for red's
fire range

• <14> Communications, which prompts the user to set red's
communication option on or off.

• <15> Communications Range, which prompts the user to enter a
value for red's communication range (see ISAACA
Communication).

• <16> Communications Weight, which prompts the user to enter a
value for red's communication weight (see ISAACA
Communication).

• <17> Movement Constraints, which prompts the user to set red's
movement constraint flag (1 meaning that constraints will be
used, 0 that no further constraints will be used; see ISAACA
Adaptability).

• <18> Threshold Range, which prompts the user to set red's
threshold range; see ISAACA Adaptability.

• <19> Advance Threshold, which prompts the user to set red's
advance threshold range; see ISAACA Adaptability.

• <20> Cluster Threshold, which prompts the user to set red's cluster
threshold range; see ISAACA Adaptability.

94

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• <21> Combat Threshold, which prompts the user to set red's
combat threshold range; see ISAACA Adaptability.

• <22> Min Distance from Red, which prompts the user to set red's
minimum-distance-from-red constraint; see ISAACA Adaptability.

• <23> Min Distance from Blue, which prompts the user to set red's
minimum-distance-from-blue constraint; see ISAACA Adaptability.

• <24> Min Distance from Red Goal, which prompts the user to set
red's minimum-distance-from-red-goal constraint; see ISAACA
Adaptability.

• <25> Probability of Shot, which prompts the user to set red's
single-shot probability.

• <26> Max Number of Engagements, which prompts the user to set
red's maximum number of simultaneous enemy targets.

• <27> Defense ('armor'), which prompts the user to set red's alive
and injured defensive strength (see Notional Defense in ISAACA
Combat).

Blue ISAACA Parameters

Pressing the "3" key (followed by <ENTER>) from the main menu that
appears after interrupting a run by pressing the "O" hot-key, displays a
sub-menu containing various blue-ISAACA-related parameter choices.
Except for the fact that this sub-menu obviously references blue rather
than red parameters, all Blue ISAACA Parameters menu choices have
exacdy the same meaning as their red counterparts, defined above.

Red Local Command Parameters

Pressing the "4" key (followed by <ENTER>) from the main menu that
appears after interrupting a run by pressing the "O" hot-key, displays a
sub-menu containing twenty red-local-command-related parameter
choices:18

• <1> Local command flag (on/off), which prompts the user to set
red's local command flag ("1" means that local command will be
used, while "0" that it will not be used; see Local Command). If
the local command flag is enabled, the user is prompted for the
number of desired local commanders and to enter values for all
local command parameters.

18 Note that if there is currently more than one red local commander defined, the
user is prompted to enter values for each local commander, in turn.

95

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• <2> Patch type, which prompts the user to set the red local
commander's patch type ("1" means that the command area will
be partitioned into 3-by-3 matrix of sub-blocks, while "2" means
that it will be partitioned into 5-by-5 matrix of sub-blocks); see
Local Command.

• <3> Patch-Choice flag, which prompts the user to set the red local
commander's patch-choice flag ("1" means that if two or more
patches yield the same penalty value, the local commander will
choose among that set of same-penalty patches randomly, while
"2" means that the actual patch chosen will be the one closest to
the previously selected patch). See Local Command.

• <4> Weight wv which prompts the user to enter a value for the
red local commander's alive and injured weights for moving
toward alive red.

• <5> Weight w2, which prompts the user to enter a value for the
red local commander's alive and injured weights for moving
toward alive blue.

• <6> Weight w3, which prompts the user to enter a value for the
red local commander's alive and injured weights for moving
toward injured red.

• <7> Weight w4, which prompts the user to enter a value for the
red local commander's alive and injured weights for moving
toward injured blue.

• <8> Weight ws, which prompts the user to enter a value for the
red local commander's alive and injured weights for moving
toward red goal.

• <9> Weight w6, which prompts the user to enter a value for the
red local commander's alive and injured weights for moving
toward blue goal.

• <10> Sensor Range, which prompts the user to enter a value for
the red local commander's sensor range.

• <11> Local command radius, which prompts the user to enter a
value for the red local commander's local command radius.
Recall that this effectively defines the size of one of the
sub-blocks into which the command area is partitioned. See Local
Command.

• <12> ISAACAs under command, which prompts the user to enter a
value for the number of subordinate ISAACAs under the i* red
local commander's command.

96

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• <13> Threshold Range, which prompts the user to enter a value for
the red local commander's threshold range. See ISAACA
Adaptability.

• <14> Advance Threshold, which prompts the user to enter a value
for the red local commander's advance threshold. See ISAACA
Adaptability.

• <15> Cluster Threshold, which prompts the user to enter a value
for the red local commander's cluster threshold. See ISAACA
Adaptability.

• <16> Combat Threshold, which prompts the user to enter a value
for the red local commander's combat threshold. See ISAACA
Adaptability.

• <17> Alpha, which prompts the user to enter a value for the red
local commander's alpha command weight. See Local Command.

• <18> Beta, which prompts the user to enter a value for the red
local commander's beta command weight. See Local Command.

• <19> Delta, which prompts the user to enter a value for the red
local commander's delta command weight. See Local Command.

• <20> Gamma, which prompts the user to enter a value for the red
local commander's gamma command weight. See Local Command.

Blue Local Command Parameters

Pressing the "5" key (followed by <ENTER>) from the main menu that
appears after interrupting a run by pressing the "O" hot-key, displays a
sub-menu containing various blue-local-command-related parameter
choices Except for the fact that this sub-menu obviously references blue
rather than red parameters, all Blue Local Command Parameters menu
choices have exactly the same meaning as their red counterparts,
defined above.

Red Global Command Parameters

This sub-menu is not yet implemented in the current version of ISAAC.

Blue Global Command Parameters

This sub-menu is not yet implemented in the current version of ISAAC.

Statistics Calculations

This sub-menu is not yet implemented in the current version of ISAAC.

97

irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Runs
The ISAAC that is described in this report is an interim version of a
"work in progress." It represents but a skeletal fragment of what will
eventually become the "core engine" of a much more sophisticated set
of tools. It is encouraging to note that, however, that even at this early
juncture, ISAAC already has an impressive repertoire of self-organized
emergent behaviors:

• Forward advance

• Frontal attack

• Local clustering

• Penetration

• Retreat

• Attack posturing

• Containment

• Flanking Maneuvers

• Defensive posturing

• "Guerilla-like" assaults

• Encirclement of enemy forces

• many more ...

Moreover, ISAAC frequently displays behaviors that appear to involve
some form of "intelligent" division of red and blue forces to deal with
local "firestorms" and skirmishes, particularly those forces whose
personalities have been "evolved" (via the Genetic Algorithm Evolver) to
perform a specific mission (see below). It must be remembered that
such behaviors are not hard-wjred-in but are effectively an emergent
property of a decentralized and nonlinear local dynamics.

No one has yet provided a satisfactory formal definition of emergence.
Loosely speaking, emergent behavior refers to the group behavior of
two or more ISAACAs that arises from, but is also qualitatively different
from, the collective interactions of the individual ISAACAs. For
example, sample run #4 shows how a slow clockwise precession of a
tight cluster of combatants locked in close combat can emerge out of
the collective interactions of enemy ISAACAs. Sample run #7 shows how
a seemingly well orchestrated "encircling" maneuver can spontaneously
emerge out of the combined actions of very many ISAACAs, all of whom
individually want only to fight the enemy and move toward the enemy's
flag.

Figures 36 through 50 provide color "snapshots" of several sample runs
using ISAAC. Table 7 also gives short descriptions. A majority of these

99

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

nans can be played back in their entirety by using the stand-alone
"play-back" program ISAAC_PB (see table 4). The files
LOCALCMD.out, GLBALCMD.out and BATTLEl.out, which were
generated using a later version of ISAAC, must be played back by
choosing option 2 on ISAAC_CE's main options screen (see figure 24).

Note that while red and blue ISAACAs are appropriately colored red
and blue in the following figures, ISAAC actually uses four colors for
rendering runs on a computer screen: bright red for alive red ISAACAs,
bright blue for alive blue ISAACAs, dark red for injured red ISAACAs and
dark blue for injured blue ISAACAs.

Table 7. ISAAC output files corresponding to the sample runs shown in
figures 36 through 50

Sample Run Figure ISAAC output file1 Brief Description

1

2

3
4

5

6

7

8

9

10

11

12

13

36 MISMATCH.out

37 FLUID_l.out

38 FLUID_2.out

39 PRECESS.out

40 GOAIDEFl.out

41 GOALDEF2.out

42 CIRCLE.out

43 PTRESTMl.out

44 FERESTM2.out

45 SENSOR.out

47 LOCALCMD.out

49 GLBALCMD.out

50 BATTLE.out

Output files are provided on

One side "outmatches" the other

Fluid-like collision between roughly equal force
strengths
Fluid-like collision between two large forces

Battle is constrained to a small pocket that slowly
precesses in clockwise direction
Successful "goal-defense" by red

Unsuccessful "goal-defense" by blue; red's
behavior is suggestive of an abrupt "phase
transition"
Red finds a way to encircle blue

Series of local firestorms

Same system as in FIRESTMl.out but blue's
communications option is turned 'on'
How well does red do against blue as red's sensor
range is systematically increased relative to that of
blue?
Sample run with a very timid red local com-
mander; blue has no command structure
Sample run with a very timid red global com-
mander commanding three local commanders;
blue has no command structure
A "mini-battle" with 400 ISAACAs per side

the accompanying disk.

100

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Run #1: MISMATCH.out

Snapshot views of the first sample run are shown in figure 36. A
"play-back" of this sample can be viewed by running ISAAC_PB using
MISMATCELout as input.

The main points of interest in this file are:

1. The very different sensor (= rs) and fire ranges (= rF) possessed by red
and blue ISAACAs: red ISAACAs have rs=2 and rF=l while blue
ISAACAs have rs=7 and rF=5. Thus blue can "see" much farther
than red (effectively anything within a 14-by-14 "box" as
compared to a 4-by-4 box by red), and can shoot from a much
farther distance (anything within a 10-by-10 box as compared to
a 1-by-l box for red).

2. While red's decision-making process is driven purely by its default
personality weight vector (wreci = (10,40,10,40,0,50)), blue decides
upon its moves by both using the same set of personality weights as red
and by incorporating additional movement constraints. Specifically,
each blue ISAACA will choose to (i) move toward the red flag
only when it is surrounded by at least 4 friendly ISAACAs
(within a threshold range rT=3 units), (ii) it will no longer move
closer to friendly ISAACAs if it is surrounded by more than 10
friendly ISAACAs, and (iii) it will move toward engaging an
enemy in combat only if it senses a force advantage of 7 friendly
ISAACAs over the enemy. Moreover, blue ISAACAs try to
maintain a minimum distance of 1 unit away from friendly
ISAACAs and a minimum distance of 2 units away from enemy
ISAACAs. The blue force can therefore be characterized as
having a much better "situational awareness" than the red force
(owing to its much large sensor range) and having a
considerably less aggressive nature. The last part is so because
while red ISAACAs will generally tend to engage all enemy
ISAACAs within their sensor and fire ranges, blue ISAACAs will
only choose to do so when they "know" that they have a
significant local force advantage.

The initial configuration of the 100-by-100 notional battlefield at time
t=l is shown at the top of figure 36.

Snapshot views of the "batüe" are provided for times t = 25, 35, 42, 65,
75, 85, 95, 110, and 127. Each of these frames tells a part of the
unfolding story.

The frame at time t=25 shows that blue has progressed towards its "goal"
(the red flag) farther than red has progressed towards its goal (the blue

101

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

flag). This is due mainly to red's tendency to "cluster" with nearby red
ISAACAs. Blue ISAACAs, on the other hand, effectively put a clamp on
clustering whenever the number of nearby friendlies exceeds a certain
number (10 friendlies within a distance of 3 units). When this threshold
is exceeded, blue ISAACAs are able to devote their full attention to
moving toward their goal. It is difficult to see in the figure, but there is a
single red ISAACA near the center of the frame that has moved quickly
forward. It is able to do so because it was initially too far removed from
friendly ISAACAs to cluster with them.

The frame at time t=35 shows that this single red ISAACA. is met by the
large cluster of forward moving blue ISAACAs. It is not entirely clear
from this image, but as soon as the blue ISAACAs sense the presence of
the lone enemy, they quickly move to surround and engage the enemy
in combat. The effect of this rapid clustering around the enemy is more
evident in the frame at time t=42, which shows the single red ISAACA
completely surrounded by blue forces. Meanwhile, the remaining red
ISAACAs are slowly moving in the direction of the blue flag. Because of
their limited sensor range, none of these red forces has yet "seen" any
enemy ISAACAs.

The frame at time t=65 shows that the large cluster of blue ISAACAs has
destroyed the lone red ISAACA that was seen to have rushed quickly
forward in the frames at t=25 and t=35. ISAAC'S full screen view (such as
the one shown in figure 23) would show at this point that blue has by
this time managed, from long range, to kill 1 red ISAACA and injure
another. However, because of red's inferior sensor and fire ranges, red
has been unable to injure any blue forces thus far.

The frame at time t=75 shows a snapshot image of some "close-combat,"
and is the first image in which there is some overlap in the clusters of
red and blue ISAACAs. At this point, red forces have been significantly
depleted - a total of 5 have been killed and another 6 injured. No blue
ISAACAs, however, have yet even been injured. This is again due to
blue's superior sensor and fire ranges. While each red ISAACA can only
engage a blue if that blue occupies an immediately adjacent site, blue
ISAACAs can engage any red that is within a 10-by-10 box around it.

The frame at time t=85 shows that the large cluster of blue ISAACAs
seen in the previous frames has broken up into several disjoint parts
that appear to "surround" the red ISAACAs. Keep in mind, that as these
blue forces surround their enemy, they continue moving toward the red
flag. Moreover, as the blue ISAACAs continue moving forward they are
able to maintain a significant power projection against the red
ISAACAs. By time t=85, 8 red ISAACAs have been killed, and another
13 injured. At the same time, no blue ISAACAs have yet been injured.

The next two frames, at times t=110 and t=127, show the conclusion of
this battle. Blue ISAACAs continue to "maneuver around" the red

102

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

forces, keeping their distance from and engaging their enemy from
long range. The sequence ends at time t=127 when the first blue
ISAACA has reached the red flag. At the end of the batüe, blue has
killed 16 red ISAACAs and injured 15; red has managed to injure only
one blue ISAACA and kill none.

It is tempting to conclude from the last few frames of figure 36 that the
blue side has devised an impromptu strategy to deal with the enemy.
Blue's strategy seems to be to exploit its superior sensor and fire ranges by
"intelligentiy" splitting up its force and continuing to advance toward
the red goal while surrounding, and pummeling, the enemy from a
long standoff range. Keep in mind, however, that this seemingly
centrally-directed behavior (as is all the behavior seen in the succeeding
figures), stems solely from a strictiy decentralized dynamics.

103

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 36. Snapshot views of MISMATCH . out

time = 25

time = 65

time = 95

time = 35

time = 75

Plut file =» ninnatch.out Conbat SP OR« ' IBB x IBB
RED ISflftCRs:
S-range = 2 "" . " ■ " " * ••

F-range - 1 - _ I
H-range ■»■ 1 ■ ■ " " "- ' !
T-rangc = 8
C-range = 0 .. - ."
p-shot- 0.892 ■ a~
MAX TGI - ALL

Randon
Personality

Weights

«LIVE INJURED ■:■ .

90/ 38 8
: : ..

(189*) C Bx) ■ , rt »'".: .
* • "

time = 1

*■•■•

5';.
■Witt"

=
„ £

tS •%

BLUE ISflflCfts:
S-range = ?
F-raoge «■ S
H-range = 1
T-range =* 4
C-rAiige = tj

p-shot= 8 ,882
HflX TCI « ALL

P-HEICHTS
m - IB IB
flR - 46 48
IB - IB IB
IB - te 48
BC - e 8
BC • 5S 58

mu - 3 4
CLS - IB IB
CBT - 5 5
B H - B B
RJt • 2 2

ftLIUE INJURED

9B-- 98 8
UB8x> (8*>

time = 42

time = 85

time = 127

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Run #2: FLUID_l.out

Figure 37 shows an example of a very different kind of "evolution." A
"play-back" of this run can be viewed by running ISAAC_PB using
FLUID_l.out as input.

The initial state of the battle is shown at the top of the figure, and shows
that, as in sample run #1, the red and blue ISAACAs initially occupy
random positions in diagonally opposite corners at time t=l. Notice
that while the blue ISAACA parameters are essentially unchanged from
sample run #1 (except for being even less aggressive this time around, by
having a combat threshold of 7, and wanting to maintain a minimum
distance of 2 units from red ISAACAs), the red force personality is very
different from the first sample run. Unlike the case in the first sample
run, where red's sensor and fire ranges were very small compared to
that of blue, here red's sensor and fire ranges equal blue's. Moreover,
while red's default personality was the same as blue's in sample run #1,
here each red ISAACA's personality is completely random. Finally, red's
decision-making process is also driven by additional constraints: each
red ISAACA will choose to (i) move toward the blue flag only when it is
surrounded by at least 1 friendly ISAACA (within a threshold range rT=3
units), (ii) it will no longer move closer to friendly ISAACAs if it is
surrounded by more than five friendly ISAACAs, and (iii) it will engage
in combat only if it senses an equal relative local force strength. Red
ISAACAs also wish to maintain a minimum distance of 2 units away
from friendly ISAACAs and a minimum distance of 1 unit away from
enemy ISAACAs. Both sides start out with force strengths of 90
ISAACAs.

As the reader can see either by mentally reconstructing the actual "flow"
of the battle from the six snapshots shown in figure 37 (which
encompass events from times t=35 to t=155), or by actually viewing this
sequence in its entirety by using ISAACJPB to play back the file
FLUID_l.out, combat between these two particular personalities
proceeds as though it were a clash between two viscous fluids. Forces
making up the two sides collide head-on but are dispersed and aligned
along two narrow columns at time t=55. The two sides continue battling
each other in this manner for a relatively large number of iterations
(time t=55 to t=110 in the figure). Notice that, at time t=85, several blue
ISAACAs have "found" a way to sneak around the bottom of red's
column-like formation. In the next frame, at time t=110, this group can
be seen advancing toward red's flag unchallenged, because it is unseen
by the red ISAACAs making up red's central column. By time t=130, a
cluster of red ISAACAs breaks away from what used to be the central
column and advances towards blue's flag. Meanwhile, blue forces
continue advancing toward red's flag at the bottom of the frame.

105

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Note that red's column appears slightly more dispersed than does
blue's. The reason for this is that whereas blues want to be as close to
one another as other extant local conditions permit), reds want to
maintain a minimum distance of D=2 units between themselves and
other reds. This continual local 'josding for elbow room" renders red's
column less finely structured.

An unexpected novel feature emerges in the frame at time t=155. The
circular cluster of blue ISAACAs at the upper left of the lower right
quadrant of the battlefield in fact makes up a small circularly rotating
"vortex" that lasts for a few iterations. Another, smaller vortex forms
later near the bottom of the battlefield (but is not shown in this figure).

At the end of the "battle" reproduced in figure 37, red ISAACAs have
managed to kill 3 blues and injure another 12; blue ISAACAs have
killed 4 reds and injured 10.

106

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 37. Snapshot views of FLUID l. out

ISAAC / Version 1 .Oc
RED ISflftCfis
S-range =
F-range -
H-range ™
T-rar»ge =
C-range =

Plot file =* fluid_i-out Conbat Space - IBB :

time = 25

'■'V ■&

time = 100

•; =$. fl!

time = 50

time= 125

BLUE ISBBCfls
S-range - 7
F-raiige = 5
M-range =■ 1
T-range » 3
C-range = 8

p-shot- 8.882
MftX IEI - ALL

'r T.

time = 75

„I H . I

time = 150

107

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Run #3: FLUID_2.out

Figure 38 shows a few snapshots taken from a play-back of the file
FLUID_2.out.

For this sample run - the first part of whose evolution is reminiscent of
a collision between two viscous fluids (see Sample Run #2: FLUW_l.out
for comparison) - there are 200 ISAACAs per side, and red and blue
ISAAGAs share the same sensor and fire ranges (equal to 5 and 3,
respectively). From a personality-weight perspective, blue ISAACAs are
relatively aggressive, in that they care little about "staying close" to
friendly ISAACAs and are motivated most strongly by moving toward
injured enemies. The red force, by comparison, distributes its
motivation more evenly among alive and injured red and blue
ISAACAs. Note - from the red and blue combat thresholds - that while
red is more apt to start local skirmishes than blue, each is more prone
to engage in combat than their counterparts in the previous example.
Note also that because of their different advance threshold constraints,
red and blue forces have different styles of moving toward their enemy's
flag: blue moves as essentially one large cluster while red self-organizes
into more ordered "columns."

Figure 38 shows that, initially, the two forces collide in what is best
described as "fluid-like" fashion. However, in contrast to the previous
sample run's simple columnar style of collision - in which the two forces
buttress up against each other along a single "boundary" before a few
red and blue ISAAGAs manage to "escape" from the top and bottom,
respectively - the collision of the two forces in this sample run is more
complex. Here, the combined mass appears to be arranged along a
well-defined but nonlinear and undulating boundary, that strains under
pressure near several "choke points." One of these choke points (near
the bottom right of the combined mass) finally breaks around t ~ 90,
splitting the combined mass into two disjoint parts. A second choke
point (near the top left of the larger central mass) breaks around t ~
114. In the immediately succeeding steps, clusters of red and blue
ISAACAs combine and break apart a few more times before some
manage to find their way to their enemy's flag.

108

irreducible Semi-Aitonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 38. Snapshot views of FLUID 2. out

ISAAC / Version 1.0c
As:

5
3
1
2
e

Plot file = Iluid_2 out Conbat Space - 158 x 150
BED ISAAC
S-range »
F-range -
W-range -
T-range *
C-range =* i. • • ■ : .«. i, ■

p-shot= 8.885
MAX IGT = ALL

* . ■ * . . .* *

P-NEIGHIS
AB - 18
AB - 58
IB - 18
IB - 58

KG - 8
BG - SB

18
58
18
58
8

58

**■.*"■ ''"'.' s

ADU - 2
as - 5
CBI - -2
B_M - 8
B M - 1

2
s

-2
8
1

. .* V ■ !

■ r r[

ftLIUE INJURED
288/288 8
(188x1 (By.)

time = 25

.' ■■*

fi
%Af > • "*££-

time = 100

BLUE ISAACAs:
S-range = 5
F-range - 3
M-range = 1
I-range - 3
C-range =- 8

.tfV'"-7' V ,

■»'' n'ijfc . i

c •i«fs.i- ■ _

s'"- Jfrn"

time = 50

time= 125

p-shot- 8.885
MAX ICI - ALL

P-HEICHTS:
AB - 5 5
AR = 25 25
IB - 8 8
IB - 98 98
BG - 8 8
KG - 25 25

ADU - 1
CLS - 3
CBI = 2
B M - 8
K_M - 2

BLIUE INJURED
288/288 8
UBBx) (8x1

time = 75

time = 175

109

^reducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Run #4: PRECESS.out

Figure 39 shows a few snapshots taken from a play-back of the file
PRECESS.out, and represents the first simple example of an emergent
behavior; namely, a slow clockwise precession of two forces locked in
local combat.

In this sample run, the two sides are equipped with the same sensor and
fire, ranges (equal to 5 and 3, respectively), but have markedly different
personalities and additional movement constraints. Red ISAACAs favor
moving toward alive and injured reds (with relative weights of 25 and
75, respectively) over moving toward alive and injured blue forces (10
and 25, respectively). This means that red forces are 7-1/2 times more
"concerned" with moving towards injured red forces than they are
moving toward alive blue, and 3 times more concerned with moving
towards injured red forces than toward injured blue forces. In contrast,
blue ISAACAs are considerably more concerned with moving toward
red forces than toward friendlies. In particular, blue ISAACAs are 3-1/2
times more concerned with moving towards alive red forces than either
alive or injured blue forces, and 8 times as concerned with moving
toward injured red forces.

Red and blue forces for this scenario also differ markedly in their
respective sets of movement constraint conditions. Red forces, for
example, advance toward the goal only if surrounded by at least 5
friendly forces within a threshold range rT=2, continue moving toward
friendly forces until surrounded by at least 10 reds, and move to engage
an enemy ISAACA only if they sense a local numerical advantage of 4
ISAACAs over blue forces. Moreover, red forces wish to maintain a
minimum distance of 3 from all enemy ISAACAs. In contrast, blue
forces advance toward the red flag even when surrounded by a single
friendly ISAACA within a threshold range rT=3, they continue to cluster
with friendly forces only until they are surrounded by at least 3 blues,
and move to engage an enemy ISAACA even if they sense that they are
locally outnumbered by the enemy by 5 ISAACAs. Moreover, they want to
get as close to red forces as possible (i.e., the minimum distance is set to
0).

This stark contrast in personalities can be summarized by saying that,
for this run, reds want to avoid a fight as badly as blues want to start one. And
once a fight has started, and blues sense injured enemy ISAACAs, blues
desire to "finish off' the enemy even more than they want to advance
towards red's flag.

As in previous sample runs, red and blue ISAACAs are initially
positioned in diagonally opposite corners (see the top frame at time
t=l). The next frame shows the two sides meeting near the center at
time t=37. Red forces are clustered into two advancing groups, while

110

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

blue forces consist of one large, and widely dispersed, cluster. What is
interesting about this particular sample run, and the way in which these
two very different personalities "interact," is summarized by the last
three frames of the battle, shown for times t=75, 125 and 250. Notice
that, unlike any of the previous sample runs, here the two forces remain
essentially locked together in local combat, moving slowly around the
upper half of the battlefield. Except for a few stray "leakers" and an
occasional group of a few blue ISAACAs that chooses to leave the main
battle and head toward red's flag, there are no scattered skirmishes
during this run. Almost all of the combat takes place within the large
cluster of red and blue forces. Notice also that this slow processional of
the locked-together cluster evolves over a relatively long time; the
cluster remains well-formed even up to the very last frame shown for
this run, showing the state of the battle at time t=250. It is also
interesting to note that the collective motion of the locked-together
cluster of red and blue ISAACAs is driven first by blue's desire to engage
(and finish-off) red forces coupled with red's desire to flee, and later -
as red gets closer to the blue flag - by red's desire to get to its goal
(while still being chased by blues).

At the end of this "battle," red ISAACAs have managed to kill 25 blues
and injure another 27; blue ISAACAs have killed 29 reds and injured
24. A large number of blues have also found their way to, and are
clustered around, the red flag.

Ill

irreducible 5emi-Aitonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 39. Snapshot views of PRECESS . out

ISAAC / Version 1.0c
As;

5
3
1
2
8

Plot file = precess-out Covibat Space = 188 X 188
RES ISAAC
S-range -
F-range =>
M-range =>
T-range =
C-range =-

:

*•
p-shot- 8.882
MAX IGT = AIL

■ " !• ■ " "1V

P-MEICHT5
AR - 25
AB - IB
IR = 75
IB = 25
RG - B
BG = 58

25
18
75
25
8

58

HDU = 5
CLS - IB
CBT > 4
R H - B
B H - 3

5
18
4
8
3

»HUE INJURED
98/ 98 8

ClBBz) (8*)

*
'.: „"

.'. '■,

BLUE ISftfiCfls

liisi"

time = 25 . time = 50

A?=U..--.

time = 100 time= 150

S-range
F-range -
M-range =
T-range =
C-range =»

p-shot- 8.882
MAX IGT - Ml

P-WEIGHTS:
AB - 18 IB

35 35
IB IB

AR -
IB -
O -
IG =
RG »

ABU = 1 1
CLS - 3 3
CBI - -5 -5
B_M - 1 1
R H - B B

»LIKE INJURED

SO/ 98 8
(188z) (Bx)

ü?! tii
!=»== si V

r**"

time = 75

time = 200

112

Irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Run #5: GOALDEFl.out

Figure 40 shows a few snapshots taken from a play-back of the file
GOALDEFl.out.

This, and the next, sample run illustrate how ISAAC can be used to
explore simple "goal defense" scenarios. In this run-, red defends its own
flag with personality weight vector waiive = (0,40,10,40,10,0. Notice
that the first (i.e., a^ive.i) and last (i-e., waivefi) components of this weight
vector are equal to zero: w^vel = 0 means that red ISAACAs initially do
not see other red ISAACAs; w^e 6 = 0 means that the red forces are not
"motivated" by moving toward the blue flag. Since w^ve5 > 0, however,
red ISAACAs are interested in staying near their own flag. In particular,
since G_M = 35, red ISAACAs "desire" to be a distance D = 35 units away
from their own flag (recall that the parameter G_M - listed near the
bottom of red's constraint parameter data field - represents the desired
distance from own goal; see Contents of ISAAC'S Input Data File). The first
snapshot in figure 40 (for time t = 25) shows that red prepares for blue's
attack by setting up its forces along a semi-circle surrounding its flag.
Note that red is given an advantage over blue in terms of both its sensor
(rs,red = 5 compared with rSbIue = 3) and fire ranges (rFred = 3 compared
wit'hrFblue = 2).

Subsequent snapshots of this sample run show that red is largely
successful in defending its goal against blue forces. As soon as blue
forces appear within red's sensor range (t = 50), red forces move out to
intercept. As red:blue close combat ensues, and red's ranks are thinned
near the center of the semi-circle, reinforcement red ISAACAs move in
from the edges. As blue tries to penetrate the semi-circular defense
posture, red forces move toward and surround the enemy.

Figure 40 shows that by time t = 125, red has successfully prevented any
of the blue forces from reaching the red flag, and has in fact managed
to kill most of the attacking force.

113

Irreducible Semi-Aitonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 40. Snapshot views of GOALDKFI . out

ISAAC / Version 1.0c
BEB ISAACBs

Flot file = goaldefl.out

S-range
F-range =
M-range =
I-range -
C-range =■

p-shot=* 8.858
MAX TCI - 3

P-WEIGHTS:
AR - B 18
AB = 48 48
IR - 18 8
IB - 48 48
BG - 18 18
BG =. 8 8

2
6
8
8
8

G_M - 35 25

flLIUE INJURED
175/175 B
CIBBK) (Bxl

ABU - 2
CLS - 6
CBI » B
R_M - B
B_M - B

Contoat Space a 180 x 186

m ," " ■ _ M-range = 1
-« «.": . " .»■ T-range = 3

C-range = B
•...

m
,Bi !■ " n-shot= 8.B5B

."..■"- "

MAX TGI - 3

* " ">" ".« P-MEIGHIS:
AB - IB IB
AR = 48 48
IB - 18 18
IR = 48 48
BG - 8 8
8C - 5B 58

ADU - 1 1
CLS = B 8
CBI - 8 B
B M - 8 8
R_M - 8 8

OLIVE INJURES
175/175 8
ClBBa) (8x>

„J.P.-

time = 25 time = 50

. 4 _2:.M"-. 'v:

Mrs .-5"j^p':.

BLUE ISBACAs:
S-range = 3
F-range = 2

time = 65

time = 75 time = 90 time = 105

114

irreducible Semi-Autonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Run #6: GOALDEF2.out

Figure 41 shows a few snapshots taken from a play-back of the file
GOALDEF2.out.

This, and the previous, sample run illustrate how ISAAC can be used to
explore simple "goal defense" scenarios. In this run, blue defends its
own flag against a red attack. Note that blue has a very simple
personality. In particular, since only the second (AR under P-WEIGHTS
in figure 41) and fourth (IR under P-WEIGHTS in figure 32)
components of blue's personality weight vector are non-zero, blue "sees"
only enemy ISAACAs. Since, initially, all blue ISAACAs are only
surrounded by other blue ISAACAs, until red forces come within range
of the blue side, the blue ISAACAs effectively perform a "random walk"
around their starting positions (since all possible moves incur exactly
the same penalty). In contrast, the red force responds to both red and
blue ISAACAs, though is "blind" to injured friendlies. Red and blue
forces are endowed with equal sensor (rs = 5) andere ranges (rFred = 3),
equal single-shot probabilities (p = 0.005) and can both simultaneously
engage a maximum of 3 enemy targets. There are 150 ISAACAs per
side.

What is interesting about this sample run is the unexpected, sudden
phase-transition-like change of behavior that occurs a relatively long time
"into" the close-combat that ensues near the blue flag. Upon reaching
the outer area of blue's defensive posture (see snapshots for times t = 50
and t = 150), red at first fights blue in a tighüy clustered formation. Red
continues fighting in this cluster-mode for a relatively long time (see
snapshots 75 through 150) until, suddenly, most of red's forces rapidly
disperse outward and stream toward the blue flag.

The static snapshots shown in figure 41 do not do justice to the
abruptness of this behavioral transition, which can be likened to
turning on a "light" by a flicking a light switch. The abruptness of this
transition is best appreciated by using ISAAC_PB to play back the file
GOALDEF2.out.

115

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 41. Snapshot views of GOALDEF2 .out

ISAAC / Version 1 .Oc

time = 25

time = 100

hs:
5
3
1
3
8

Plot file = goaIdaf3-out Combat Space » IBS x 180
RED ISflRC
S-range -
F-range «
M-range =
T-range =»
C-range a

■•'*■">■■:: **

p-shot- 8
MAX IGT =

.883
3 '■"■""■ ""■

P-WEIGHIS
BR - 18
BB = SB
IR = 8
IB - 188
RG = 8
BG - 25

18
58

8
188

8
25

ADD = 1
CLS - 3
CBI - -3
R M - 8
B_M - 1

1
3

-3
8
1

*■ "

.'•■■ '.".£\S
(M.IUE INJURED
158/158 8
C1B8Z) (Bz)

i~| BLUE ISBACAs:

time = 50

:?r-»;H;:«!:. • >

time = 150

S-range
F-range »
M-range =
T-range =
C-range =

p-shot= 8.883
MAX IGT - 3

P-HEIGHIS:
AB = 8 8
AR = 25 25
IB = 8 8
IR = 25 25
BG - 8 8
RG - 8 8

flUUE INJURE!
158/158 8
ClBBx) (8a)

•■ • '■:""; >•';•>■

-''■■im-

time = 75

iHljujsfr-'
~lHfir="

time = 175

116

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Run #7: CIRCLE.out

Figure 42 shows a few snapshots taken from a play-back of the file
CIRCLE.out

As can be seen from the parameter values shown in the snapshot of this
run for time = 1, the red force is very aggressive (with a combat threshold
of negative 7 and a strong propensity for moving toward injured blue)
while the blue force is fairly timid (with a combat threshold of positive 5
and a propensity for moving toward injured friendlies). Red and blue
forces are endowed with equal sensor (rs = 5) andere ranges (rFred = 3),
equal single-shot probabilities (p = 0.005) and can both simultaneously
engage a maximum of 3 enemy targets. There are 200 ISAACAs per
side.

This sample run is noteworthy for two reasons: (1) the unexpected
self-organized internal formation of red forces as they advance toward
the blue flag (see snapshot for time t = 25), and (2) the emergent, and
seemingly "intelligendy orchestrated," encirclement of blue by red
forces (see snapshots for times t = 85 through t = 140). Concerning the
orderly fashion in which red ISAACAs march forward, keep in mind
that this internal order arises despite the fact that ISAAC randomizes the
order in which ISAACAs are sampled for making their moves on each
iteration step. Note that this self-organized behavior is only partially
revealed by the static snapshot in figure 42. In order to fully appreciate
this point the user is urged to play back CIRCLE.out by using
ISAAC_PB.

An interesting question to ask is "How should blue alter its personality
(i.e., its "tactics") - during the course of the battle - in order to prevent
being encircled by red forces?" While ISAAC can be used to explore the
behavioral consequences of matching alternative fixed blue
personalities against the same red force, ISAAC does not yet have the
flexibility to explore the consequences of a dynamically changing
personality (i.e., wieta-personalities). Meta-personalities are planned to
be incorporated into future versions of ISAAC.

117

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 42. Snapshot views of CIRCLE . out

ISAAC / Version 1.0c

1 ■•■'!.. -'1 ■

•TK'i'i/-'»"
~j\"\ i! 'I1/-'

■,.,__,... .

time = 15

SM.T

"biiiifilqpn'1'

time = 85

Bs:
Plot file a cipcle_l.out Combat Space = 100 x 180

RED ISHBC ■it» ■ ■■ ■ *
S-range - 5 ■-a.:.".:: -• -s"
F-range - 3 ■■■*<■"■ •■ ■■■•

M-range = 1 . ::"■!::: :!■!■ s!
T-range = 3 -: "■•■ :„:-. -■

C-range = B "."":!-",L":S":!:
p-shot- B .885
MBX IGT - 3

P-MEIGHIS
BR - IB IB
BB = SB 58
IR = B a
IB - IBB IBB
RG - B B
BG - 25 25

(W - 1 1
CLS - 3 3
CBI - -7 -7
R M = 8 8
B M - 1 1

ALIVE INJURED :!i". ."■- ■::. "

2BB/2BB 8 ':.:: . z ..:.:..■■
tlBBz) (Bz)

::!::
*""

BLUE ISBflCfis!

.i^-rfi'Iii^

time = 25

■§fgi. ■
'•Ijliiijis. rÄ!;
."'11:1'!'!' T""''

time = 110

S-range = S
F-range = 3
M-range =■ 1
I-range = 3
C-range = B

p-shot= B .BBS
MAX TGI = 3

F-HEIGHIS
AB - 25 25
AR - 25 25
IB - 75 75
IR = 25 25
BG = 8 8
RG - 75 7S

ABU = 5 5
CLS = 15 15
CBI - 5 5
B_M - 8 8
R_M « 1 1

ftLIOE INJURE!
2BB/2BB B
UBBa) t 8x)

'1 ■••;■ .

:;piiji§!jijjj£
■iKüiüriillc

time = 50

.H"PI.I-J :L.
d^3tXSiii> ' "«IlimHfEi"

'.''"Upy?

■.!■•■ •i

time= 140

118

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Run #8: FIRESTMl.out

Figure 43 shows a few snapshots taken from a play-back of the file
FIRESTMl.out.

Figures 43 and 44 are meant to be viewed together. Figure 44, which
contains snapshots from a play-back of FIRESTM2.out, shows how
exactly the same two force personalities shown in figure 43 unfold,
except that blue ISAACAs are allowed to communicate with other blue
ISAACAs.

As can be seen from the parameter values shown in the snapshot of this
run for time = 1, the red and blue forces are virtually identical for this
sample run: each is endowed with the same sensor (rs = 4) andere ranges
(rF,red = 3). each has the same single-shot probabilities (p = 0.003) and can
simultaneously engage the same maximum of 3 enemy targets, and each
obeys the same combat constraint conditions. Their personalities differ
in that while each blue ISAACA is defined by the same personality
weight vector w = (10,40,10,40,0,50), each red ISAACA is defined by
a different and random weight vector. There are 150 ISAACAs per side.
Note that neither side uses communication.

The only noteworthy feature of this sample run is the overall, slightly
disorganized, pattern of behavior that is to be contrasted with the
behavior in figure 44. After the "collision" between the two forces at
time t~60, the unfolding combat consists mainly of small, tightly
clustered "firestorms" near the center of the battlefield. Neither side
appears well organized, as both red and blue ISAACAs can be seen
migrating from firestorm to firestorm. Now, skip ahead to figure 44,
which shows the effects of endowing one side with an ability to
communicate

119

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 43. Snapshot views of FIRESTMI .out

ISAAC / Version 1.0c

time = 40 time = 60

■'Sfii

time = 100 time = 125

Plot file = firestni.out Combat Space = IBB x IBB
RED ISOfiCHsi "" ■: - ■■ «T
S-range = 4
F-range - 3 "-. "Wm ~.a ". ,-,

M-range - 1
T-range - 3 ." . - j^.. ;-•- .*

C-range * 8
""•■" "■„"." • ""'.

p-shot- 8.883 •!*• ! .. "• :.
MAX IGT - 3

Randon
Persona 1 ity

Neights

AW = 4 4
CLS = IB 18
CBI - -4 -4
R M = 1 1
B_M - 1 1

.' "
■■•'. ■: .":- - '".-

flUUE INJURED

158/158 8 '« ... " . ■»if* .
ClBBx) (8z) ' ■ '■ ■ ■■■ •

. ". ". -'• *"■

«a "

BLUE ISARCRs:

t .. 1«

. *ll , t .a.-
I .i.i.r *Vzy

;■:• "Hi -fecif

S-range
F-range ■=
M-range =
T-range =
C-range =

p-shot- B.BB3
MAX TGI - 3

P-NEIGHIS:
BB = IB IB
AR - 48 48
IB - 18 18
IB - 48 48
BG = 8 8
RG - 58 58

ADU - 4 4
CLS - 18 18
CBT = -4 -4
B_M - 1 1
RJt = 1 1

ALIKE INJURED

158/158 8
UB8x) (Bx)

' ' 1

... •iiiitiSsU

1 J'^ffib.

time = 75

'"v3" r.

time = 150

120

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Run #9: FIRESTM2.out

Figure 44 shows a few snapshots taken from a play-back of the file
FIRESTM2.out.

Figures 43 and 44 are meant to be viewed together. Figure 43, which
contains snapshots from a play-back of KLKESTMl.out, shows how
exactly the same two force personalities shown in figure 44 unfold,
except that neither the red nor blue forces have communications.

As can be seen from the parameter values shown in the snapshot of this
run for time = 1, the red and blue forces are virtually identical for this
sample run: each is endowed with the same sensor (rs = 4) and fire ranges
(rFred = 3), each has the same single-shot probabilities (p = 0.003) and can
simultaneously engage the same maximum of 3 enemy targets, and each
obeys the same combat constraint conditions. Their personalities differ
in that while each blue ISAACA is defined by the same personality
weight vector w = (10,40,10,40,0,50), each red ISAACA is defined by
a different and random weight vector. There are 150 ISAACAs per side.

The major difference between the red and blue forces in this sample
run is that the blue ISAACAs are able to communicate with one another.
In particular, blue's communications range (or C-RANGE) is equal to 6,
and blue's communications weight tucomm = 0.25. This means that each
blue ISAACA uses not only the information that is aware of in its own
filed-of-view (out to a sensor range rs = 4), but information
communicated to it by all friendly ISAACAs within a range rcomm = 6.
This additional information is assigned one-fourth the weight relative to
information supplied by own-sensor. As in figure 43, the red side does
not use communications.

Comparing the behavior-as it unfolds in this sample run to that shown
in figure 43, we see that the pattern this time is, overall, better
organized. Instead of the small, tightly clustered "firestorms" that
characterize the run in the absence of blue communications, here blue
is able to maintain a strong organized central presence. No blue is
allowed to stray too far from the area of the most intense combat, and
few isolated "firestorms" appear, as they had in the earlier example.

It is interesting to note that while red undeniably "follows" blue's lead
throughout the encounter (a fact that is much better illustrated by
playing back the file FIRESTM2.out with ISAAC_PB) - that is to say,
that blue initiates an action to which red immediately responds - red
also appears to be better organized than in the previous example. This,
despite the fact that red does not use communications in either example. The
rudimentary "lesson learned" is that when one side unilaterally
enhances its internal organization, that action may - ironically -
enhance the apparent organization of both sides.

121

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 44. Snapshot views of FIRESTM2 . out

ISAAC / Version 1 .Oc

time = 25

time= 100

Vi:.V-

ifc u;:•.

=tfi- T--

.::U>::

•—. • -. r: . .
.-='■ ' t-

. .lEes-'-
j WIR?*!'!.

"J- .-, ••r,|3!l!
I«

.•5"Bi:;B?f

' aiiüiläiiiii

time = 50

time = 125

Plot file ■ firestnZ-out Combat Space = 100 x 180
RED ISAACAs:
S-range = 4 . :;.•;»..:< -♦
F-range « 3 *""■ "■•"• "■■ !"■ »*.

M-range - 1 *.' '«•' '• ' ■
I-range » 3

l;::.".":.?!. &m C-range - 8

p-shot= 8.883 .■r::u..!: s:
MAX IGI - 3

Randon
Persona 1ity

Heights

ADU - 4 4
CLS - 18 IB
CBI - -4 -4
X M - 1 1
B_M - 1 1 ■ ■> ■■■s • , B •

\"m """. ""
»IIUE INJURED . ; • , "■ " ' .*

158/158 8 "« — " ■ ■"::" :.

(1B8X) (Bx)

«■ •■ H'M." '■

BLUE ISfiflCfls
S-range » 4
F-range =• 3
M-range - 1
T-range ■ 3
C-range - 6

.J1!!;.

*is i&wü!i
■IT «■■■■■"

"V
■ %■■

p-shot= 8.883
MAX IGT - 3

P-HEIGHIS:
AB - IB IB
AR - 48 48
IB - IB IB
IR - 48 48
BG - B B
RG = SB SB
COMM - B.2S

AD« - 4 4
as - IB IB
CBI - -4 -4
B_M = 1 1
R M - 1 1

«LIVE INJURE!
158/158 8
UBBx) (Bx)

time = 75

Jd.-JüäiliÜC-

|~-;i:?i|lg
.T _ -«Jljy-

"V

time = 150

122

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Run #10: SENSOR.out

Figure 45 shows snapshots at times t = 20, 40 and 60, taken from
play-backs of files SENSOR_l.out, SENSOR_2.out, SENSOR_3.out, and
SENSOR_4.out. These play-backs appear together here to illustrate the
effects of systematically increasing one side's (namely, red's) sensor range while
keeping the other side's parameters fixed.

The scenario for this sample run is as follows. The red force consists of
N=100 ISAACAs, and is fairly aggressive, with a combat threshold of
negative 4. The blue force consists of N=50 ISAACAs, and is less
aggressive than red, with a combat threshold of zero. Both sides are
endowed with the same fire range (rF = 4), the same single-shot probability
(p = 0.005) and can simultaneously engage the same maximum of 3
enemy targets. Note that the flags for this sample run are located near
the middle of the left and right edges of the notional battlefield.

The four rows in figure 45, from top to bottom (appearing below the
initial state shown at the top of the figure), show snapshots of runs in
which red's sensor range is systematically increased in increments of
two: rs red = 3 for SENSOR_l.out; rs red = 5 for SENSOR_2.out; rs red = 7
for SENSOR_3.out; and rs red = 9 for SENSOR_4.out. Note that blue's
sensor range, rs blue, remains fixed at rs blue = 5 throughout.

The snapshots for SENSOR_l.out show that when red's sensor range is
less than blue's, red is effectively able to "barrel" its way through the blue
defenses into blue's flag, as it is unconcerned about - or, more likely,
simply unaware of, because of its relatively short sensor range - the
surrounding blue forces.

The snapshots for SENSOR_2.out show that when red's sensor range is
set equal to blue's, red is no longer able to penetrate blue's defense as
swiftly as in the previous run. Since red ISAACAs here have an longer
sensor range, more of them are able to sense - and are therefore forced
to respond to - the surrounding blue forces.

The snapshots for SENSOR_3.out show that when red's sensor range is
two units greater than blue's, red is not only able to mass almost all of its
forces on the blue flag (a later snapshot would reveal blue's flag
completely enveloped by red forces by time t=100), but to defend its
own flag from all blue forces as well. In this instance, the red force
knows enough about, and can respond quickly enough to enemy action such
that it is able to march into enemy territory effectively unhindered by
enemy forces and "scoop up" blue ISAACAs as they are encountered.

What happens when red's sensor range is increased still further? One might
intuitively guess that red can only do at least as well; certainly no worse.
However, as the snapshots for SENSOR_4.oiit show, where red's sensor

123

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

range is increased to rs red = 9, red actually does worse than it did in any
of the preceding runs. "Worse" here means that red is less effective in
(a) establishing a presence near the blue flag, and (b) defending blue's
advance toward the red flag.

There is, perhaps, a fundamental lesson to be drawn from this simple
example: given that the resources and personalities of both sides remain fixed in
a conflict, how "well" side X does over side Y does not necessarily scale
monotonically with X's sensor capability. As one side is forced to assimilate
more and more information (with increasing sensor range), there will
inevitably come a point where the available resources will be spread too
thin and the overall fighting ability will therefore be curtailed. On the
other hand, the deeper lesson here might be that as sensor range is
increased - thereby increasing the amount of "information" that side X
is forced to assimilate and respond to - X's resources and/or tactics (i.e.,
"personality") must also be altered in order to ensure at least the same level of
"mission success."

124

irreducible Semi-Autonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 45. Snapshot views of SENSOR_X.out (X=1,2,3,4)

*- II

-| = us m
o #
co
z "

w *
&

time = 20

time = 20
IO
II

*i CM S
a:1 m
O in

•

CO II

S D?
CO -o

0) a
time = 20

in

~ ".
3*
". ^
K m .L^-%i^j.

O ^:
CO I,

HI or
CO -a

<D a
time = 20

IO

Hi • ai
"*. 3
a1 a ^j[:|L_. •
O a? ^"^jr I-
CO ii

§ of
CO -a

o a:

Initial State

time = 40

time = 40

time = 40

"Vi
sjfijr •

t -
^J-dl

•

'."■vt
•4r

time = 60

■t ■ J>'

ir
" ••*

-■

■»B1 3- * •
r.

time = 60

•

time = 75

1 *i

:; - !••■■■ m

^1r ■ '*'
" f

time = 75

125

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Run #11: LOCALCMD.out

This sample run illustrates a simple scenario in which the red force is
endowed with one local commander (LC). The blue force is, as in all
preceding examples, strictly decentralized.

Figure 46 shows a fragment of the input data file used to generate this
run. This fragment is used to define the parameters of the red local
commanders. Figure 46 shows that there are three LCs
(num_RED_comdrs = 3). Each LC has 20 subordinate ISAACAs under
his command ((l)_R_undr_cmd = 20)19 and reacts only to enemy
ISAACAs (w2:alive_B = w4:injrd_B = 35) and the enemy flag (w6:B_goal
= 50). The LCs in this sample run are also fairly timid, both as
individuals (with a combat threshold of positive 25) and as commanders
(with negative command weights). Negative local command weights
mean that the LCs tend to send their subordinate ISAACAs away from
(rather than toward) areas in which the red forces are outnumbered by
blue. Figure 47 shows a few snapshots taken from a play-back of the run
stored in LOCALCMD.out.

Figure 46. Fragment of LOCALCMD.dat input data file

* RED LOCAL COMMAND PARAMETERS *******************************

l'REDJifcörtäfi'dii.fVägJ 1 ^:: :
num_RED_comdrs 3
:R_patchitype 1

: R_patch_flag 2

: * local: commander parameters

: Cl)_RiUrtdr_cmd .20:'■■:■:;
(l)i.R_ctnnd_rad 2
(D-A-SENSOR^rng 7

:* local: commander personal ity •.'..;:

U)_wl:alive_R 0.000000
(l)_w2:a1ive_B 35.000000
(D_w3:i:njrdlR: 0.000000
(l)_w4:injrdiB 35.000000
U)_w5:R^goal 0,000000
Cl)_w6:Bjoal 50.000000

; *■;: 1 ocaIT: command er con str a i nts;;

aOliÄDVi^ange;: -:wC
(1}_ADVANCE nun 0
(l)_CLUSTER_num 0
(l)_C0MBAT_num 25

* local command weights

<:l}2R-*-Slphfl -1-.
{l)^R_w_betä: -1.
(15-R_wjelta -1.
Xl)_R_w_gamma -1.

:.■* global command weights

:(l;)^.w^obey_GC_def"l.:::;

Figure 47 shows a few snapshots taken from a play-back of the file
LOCALCMD.out (using ISAAC_CE). The images shown here can be

19 The data file fragment in Figure 46 shows only the parameters values of the first
local commander. The other two local commanders are identical.

126

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

reproduced interactively by pressing the "C" hot-key toggle-switch (see
"Hot-Key"Menu) a few times to display the LC's command area (i.e., the
box surrounding the black "dot" representing the LC) and the LC's
subordinate ISAACAs (i.e., the maroon colored "dots" that are
"tethered" to the LC).

Figure 47 shows that as soon as the LC encounters enemy forces at the
periphery of its command area (see snapshot at t = 30), it moves away
from them (as well as the ensuing combat near the center of the
notional battlefield), and directs its subordinates to follow. From that
point on, the LC is able to stay clear of all enemy ISAACAs, and thereby
steer its subordinate ISAACAs from harm's way. After most of the
fighting near the center of the battlefield has ended, the LC finally
"sees" a clear path toward the blue flag (see snapshot at t = 155).

127

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 47. Snapshot views of LOCAICMD . out

REDE 13: 158

S-range =■ 5
F-range » 3
M-range » 1
T-range - 5
C-range « 8

p-shot- 8.BBS
MAX ICI - S
»EF - 1 1

ISAAC/Version 1.8.4

P-HEIGHTS
m - IB 76
m =■ 48 61
IK - IB -4
IB - 41 188
RC - B SB
BG - SB 8

BDU - 3 4
CLS - 3 9
CBT - 8 6
X H = B 8
B N - 8 B

flLIUE INJURED

158/158 8
(IBS*) (BzJ
15B/15B 8
ClBBx) (Bz)

BLUEC 13: 158

time = 15

time = 80

*

-..; ■-, :,"=.."•; *

"■ /:i"!!isi:Jri:"

«sis? : - :• I::"

time = 30

" m

•I -ÜI

lii!*!.i'! ! j

Li, „ ■ i|l

-•

r

S-range ■
F-range !

M-range ■
T-range ;

C-range '

p-shot- 8.BB5
MAX IGT = 5
DEF = 1 1

P-MEIGHIS:
OB - IB IB
flR = 4B 48
IB - 18 IB
IR = 41 41
BG : 8 8
RG - 58 58

RDU = 2
as - 8
CBI - 3
B M - 8
R M - 8

3
12
5
8
8

(H.IUE IHJUKES

158/-1SB
ClBBz) C
158/158
ClBBz) (

8
87.)
8

*

-

"'<£$
::&:':.

■m 'ii:fe;i -

m

time = 60

time = 105 time = 155

128

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Run #12: GLBALCMD.out

Figure 48 shows a fragment of the input data file used to generate
sample run #12. This fragment is used to define the parameters of the
red global commander. Figure 49 shows a few snapshots taken from a
play-back of the run stored in GLBALCMD.out.

Figure 48. Fragment of GLBALCMD.dat input data file

RED GLOBAL COMMAND PARAMETERS

******^ .
ED_g1oba1_f1ag 1

direction parameters;

:G fear index:
C_w_a1pha l;

:C_x_beta 1.
C_frac_R[l] .3
C_frac_R[2] .6
C_w_swath[l] 1.
C_w_swath[2] 1.
:ei>/jisWathI33 1.

C_he1p_radius 40
C_h_thresh .1
C_rel_h_thresh 1.5

help parameters

C max red f 2.5

The initial state and almost all parameters defining the red and blue
forces are the same as in the previous sample run (LOCALCMD.out).
One important difference, however, is that whereas the red local
commanders were all very timid in LOCALCMD.out - as exemplified by
them all having negative command weights (see figure 46) - here the
local commanders all have positive weights. This means that the local
commanders in this sample run always send their subordinate ISAACAs
toward (rather than away from, as in the previous sample run) the area in
greatest need of red firepower.

In contrast, the global commander is very timid. Figure 48 shows that
the GC's GC_fear_index is set equal to one, meaning that the GC will
vector his local commanders toward the blue flag if and only if he finds
a "sector" pointing at the blue flag that is completely free of blue
ISAACAs.20

Figure 49 shows that the GC is able to keep his local commanders (and
therefore their own subordinate ISAACAs) away from harm's way until
the blue force moves close to the red flag. Note that the cluster of red

20 "Sectors" and other parameters defining local and global command are discussed
in Command and Control.

129

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

ISAACAs that collide with the blue force at time t = 25 are not under
either local or global command.

If GLBALCMD.out is played back interactively using ISAAC_CE, recall
that the "C" hot-key acts as a toggle switch for displaying various
command-related parameters on screen. Figure 49 shows both a
command-box surrounding each local commander (representing the
LC's field-of-view and area of responsibility) and a thin dark tether
connecting the three LCs (reminding the user that each is under the
command of a global commander).

130

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 49. Snapshot views of GLBALCMD . out

BEDE 13: 180
Plot file =

ISAAC/Ve
isaae_gc-out

ärsion 1.8
Conbat

4
Space - 68 x 8B

S-range - 5
*: !V"- ■■ .I.t F-range » 3

M-range - 1 •" "•" " 3 "•* Z"
T-range - 5 ■ > * ■ 5"
C-range - 8

■ ■' I:.-. s
p-shot™ 8.085
MAX TGI - 5 ■ ■ ■■ > "»!"*
DEF - 1 1 * ■ ■ ■ *

F-HEIGHTS:
AR - IB 76
RB - 4B 61
IR - IB -4
IB - 41 IBB
RG - B SB
BG - SB 8

ABU - 3 4
CIS - 3 9
CBI - B 6
R_M - B B
B_N - B B " ". "_■ ;." ."

ALIKE INJURED \- ■B ■

188/188 8 . ■ . ■

ClBBz) (8x3 ■ ■■■ " " •
18B/1B8 8
11« f 8«)

® : • ■ ■

BLUEC 13: 188

:s ■-: •••:

time = 10 time = 25

:'. *"* !

•

A
"if :

' •*■ • l" '

•~

time = 75 time = 100

S-range ■
F-ranga -
M-range -
T-rango =
C-range =

5
3
1
3
8

p-shot» B
MAX TGT -
DEF - 1

.885
5
1

P-WEICHTS
AB - IB
AR - 4B
IB - IB
IR - 41
BG - B
RC = 5B

IB
48
18
41
8

58

ABU - a
CLS - 5
CBI - 3
B_M - a
R M - 8

a
8
5
a
a

ALIKE INJURE!

1BB/1B8
(188x1 (
1BB/1B8
ClBBx) C

B
8x)
B
Bx)

time = 50

time = 125

131

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Run #13: BATTLEl.out

Figure 50 shows a few snapshots taken from a play-back of the file
BATTLEl.out.

This last run is an example of what a relatively large ISAACian "battle"
looks like. In this battle, a large number of ISAACAs (400 per side)
engage first in close combat, then in an increasing number of smaller
local skirmishes that eventually spread to all parts of the notional
battlefield.

The red force is very aggressive, with a strong propensity for moving
toward enemy forces and a combat threshold of negative 6 (see
parameter values in the snapshot for time = 1). The blue force is less
aggressive than red, with a slightly higher propensity for moving
outward alive blue rather then alive red ISAACAs and a combat
threshold of zero. Blue ISAACAs are also more prone to cluster than
reds. Both sides are endowed with the same sensor range (rs = 6), fire
range (rF = 3), the same single-shot probability (p = 0.001) and can
simultaneously engage the same maximum of five enemy targets.

Figure 50 shows that, after the collision between the two forces takes
place some time before the snapshot at time = 60, the battle evolves in
essentially two distinct phases. The first phase consists of tight, close
combat that - except for a slight "fraying" at the edges - is entirely
confined to the central region of the battlefield. The second phase,
which begins some time before the snapshot at time = 115, consists of
an increasing number of much smaller-scale skirmishes spreading
outward from what used to be the area of close combat. While not
immediately clear from figure 50, there is complicated pattern of
maneuvers on both sides, as red and blue ISAACAs continually shift
over from one skirmish to another as the battle unfolds. This run may
be viewed by using ISAAC_CE to play back the file BATTLEl.out.

132

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 50. Snapshot views of BATTLE l. out

RESC'U: 488 ISAAC / Version 1.8.4
S-range <
F-range ■•
M-range ■
I-range ■
C-range <

Plot file - battlel.out

p-shot- 8.881
MAX TGI - 5
DEF - 1 1

P-MEIGHIS j
AR - 15 25
AB - 75 99
IK = -18 8
IB - 91 188
KG - 8 8
BG = 99 58

ABU - 1 2
CLS - 3 5
CBI - -6 -3
K_M - 2 8
B N - 8 8

ALIUE INJURED

488/488 8
ClBBx) C By.)

ClBBx) (8/.)

Combat Space ■ 15B x 158

im

«..-S^HgCiiT.

■•cm* ■ oil u-

time = 40 time = 60

,
1.

.1,
'-■?7

-' l.,<
= ./1|"?\ "•I"'1

;,£. '
*

• •??>$&>>
fc

■*$■,'//

'!

BLUEC 1]: 4B8

S-range -
F-range -
M-range -
T-range -
C-range -

E
3
1
3
8

P-shot- 8.881
MAX TGI - 5
BEF - 1 1

P-WEIGHTS
AB - 58
AR - 48
IB - 15
IK - 58
BC - 8
RG » 78

75
15
18
51
15
SB

ABU = 2
CLS - 12
CBT - 8
B_M = 8
K_M - 4

3
16
3
8
8

«LIVE IHJUHni

488/488
(188*) (
488/488
(188/.) (

8
8K)
8
By.)

time = 85

■" ' ' ., .*!■
■•■»lr

. •in'*'

*? '■■■ * ' ^Y*1

*' •vv:J'...^..' '

..
■•v " V "

H"-

ml 1
-'

time = 115 time = 150 time = 175

133

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Data Collection
So far, we have discussed only how ISAAC can be used to display (or
play back) the time evolution of a given data input file. In this simple
visual mode of operation - which can be thought of as a purely syntactic
representation of the unfolding behavior, in that it displays the exact
symbology of what is happening and no more - the user chooses a new
data file, or selectively alters the contents of an existing one, and runs
ISAAC to display the resulting dynamics. While such interactive runs are
obviously very useful in identifying a variety of emergent behaviors (see
Sample Runs), and can therefore be quite provocative - on a qualitative
level - they do not by-themselves constitute any direct quantitative
evidence of any sort of behavior. For this, other, more semantically
oriented, measures are required; measures that provide not just a
record of what is happening but an interpretation of why it is
happening.

To this end, ISAAC provides a capability to (1) generate time series of
various changing quantities describing the step-by-step evolution of a
battle, and (2) keep track of certain measures of "how well" mission
objectives are met at a battle's conclusion. The former (using built-in
statistics measures; see below) yields quantitative snapshots of a battle as
it unfolds in time; the latter (using a simple parameter-space mapping
technique; see below) yields semi-quantitative measures of "success" at a
mission's end.

Built-in Statistics

ISAAC is equipped with a rudimentary data collection capability.
Specifically, ISAAC'S Core Engine (i.e., the program ISAAC_CE; see table
4 in Overview of ISAAC)21 has facilities to calculate seven basic classes of
information (each as a function of time; see discussion below):

• Class 1: Force sizes

• Class 2: ISAACA interpoint distance distributions

• Class 3: ISAACA neighbor-number distributions

• Class 4: ISAACA:enemy-flag interpoint distance distributions

• Class 5: ISAACA cluster-size distributions

• Class 6: Center-of-mass positions

. • Class 7: Spatial Entropy

21 ISAAC'S single-squad version ISAAC_SQ has exactly the same data collection
capabilities as the full multi-squad version.

135

Irreducible Semi-4utonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Data collection is enabled by setting the stat_flag variable appearing in
ISAAC'S input data file equal to 1 (see Statistics Parameters in Contents of
ISAAC'S Data Input File). The calculation of each of the above classes of
statistics is toggled by individual parameter "flags" appearing in the
statistics parameters section of ISAAC'S input data file.

The total output of ISAAC'S data collection routines (assuming all
statistics flags are set equal to 1) is distributed among 21 consecutively
numbered files STATS_l.dat through STATS_21.dat. Table 8 provides
a brief description of their contents. A complete listing of the data fields
appearing in each of these output files is given in Appendix E:
STATSJLdat Data Fields below.

In addition to these 21 output data files, the user also has the option of
using the auxiliary parameter-space mapper program ISAAC_PM to
effectively "map-out" the dynamical behavior over a two-dimensional
slice of ISAAC'S total N-dimensional parameter space using certain
(user-defined) measures of behavior (see Taking 2D "Slices" of ISAAC'S

Parameter Space below).

Table 8. Description of ISAAC'S data output files

Class of data Appropriate
"flag"1

Associated Output
files

Force sizes

ISAACA interpoint distance
distributions

ISAACA:enemy-flag interpoint
distance distributions

ISAACA neighbor-number
distributions

ISAACA cluster-size distributions

Center-of-mass positions

Spatial entropy

stat_flag

interpoint_flag

interpoint_flag

neighbors_flag

cluster_l_flag
&

cluster_2_flag

center_mass_flag

entropy_flag

STATS_l.dat

STATS_2.dat-
STATS_6.dat

STATS_7.dat &
STATS_8.dat

STATS_14.dat -
STATS_19.dat &
STATS_21.dat

STATS_10.dat-
STATS_13.dat

STATS_20.dat

STATS_9.dat
1 This refers to variables appearing in the statistics parameters section of ISAAC'S
data input file (see Contents of ISAAC'S Data Input File)

Classes of Data

As mentioned above, there are seven classes of statistical information
that ISAAC is able to keep track of during a run. The following sections
contain brief descriptions of each class.

136

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Class 1: Force sizes

The first class of data consists of keeping track of basic red and blue
ISAACA force strengths, measured as the remaining fractions of the
original force size. Separate measures are provided for alive red, alive
blue, injured red, injured blue and total red and total blue forces.

For data field descriptions see STATS_l.dat in Appendix E: STATSJLdat
Data Fields.

Class 2: ISAACA interpoint distance distributions

The second class of data consists of keeping track of the averages and
distributions of the distances between pairs of ISAACAs. Separate
measures are provided for red:red pairs, red:blue pairs, blue:blue pairs
and distances between red ISAACAs and the blue flag and blue
ISAACAs and the red flag.

For data field descriptions see STATS_2.dat through STATS_6.dat in
Appendix E: STATSJLdat Data Fields.

Class 3: ISAACA neighbor-number distributions

The third class of data consists of keeping track of the averages and
distributions of the number of neighbors that red and blue ISAACAs
have that are within a range R=l, 2,..., 5 of them. Separate measures are
provided for red, blue and all (either red or blue) ISAACAs near red
ISAACAs, red, blue and all (either red or blue) ISAACAs near blue
ISAACAs, and red and blue ISAACAs near both red and blue flags.

For data field descriptions see STATS_14.dat through STATS_19.dat and
STATS_21.dat in Appendix E: STATSJLdat Data Fields.

Class 4: ISAACA:enemy-flag interpoint distance distributions

The fourth class of data consists of keeping track of the averages and
distributions of the distances between red and blue ISAACAs and their
enemy flags (i.e., between red ISAACAs and the blue flag and blue
ISAACAs and the red flag).

For data field descriptions see STATS_7.dat and STATS_8.dat in
Appendix E: STATSJLdat Data Fields.

Class 5: ISAACA cluster-size distributions

The fifth class of data consists of keeping track of the averages and
distributions of the sizes of clusters of ISAACAs, using inter-cluster
distance criteria of D=l and D=2. (An inter-cluster distance criteria of
D=d means that two ISAACAs that are within a distance d of each other
are defined to belong to the same cluster.) Because this class of data
provides an insight into the gross structural appearance of the entire

137

^reducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

battlefield, it can be thought of as a crude pattern recognition measure.
Another such measure is provided by spatial entropy (see below).
Appendix F contains a heuristic description of the Hoshen-Kopelman
algorithm used to calculate the cluster distribution.

For data field descriptions see STATS_10.dat through STATS_13.dat in
Appendix E: STATSJLdat Data Fields.

Class 6: Center-of-mass positions

The sixth class of data consists of keeping track of the (x,y) coordinates
of the center-of-mass position of the red, blue and total (i.e., red +
blue) force, as well as the distances between the red and blue forces and
both flags. The center of mass of the red force at time t, for example, is
defined by coordinates xred CM(t) and xhXw(M{X) given by

NKi(t) 1 #r«|(0

*red,CM« = ^ X *red,/(0 ^ J'red.CMC) = Jf^j Ij JW') >

where xred ;(t) and yTed t(t) are the x and y coordinates of the 1th red
ISAACA at time t, respectively and Nred(t) is the total number of red
ISAAGAs at time t.

For data field descriptions see STATS_20.dat in Appendix E:
STATSJLdat Data Fields.

Class 7: Spatial entropy

The seventh class of data consists of keeping track of the spatial entropy
of the configuration of the red, blue and total (i.e., red + blue) force.

Spatial entropy provides a measure of the degree of disorder of a
battlefield state. For example, a large group of tightly clustered
ISAACAs is relatively highly "organized" and therefore has low entropy.
In contrast, a battlefield that consists of many and widely dispersed
small groups of ISAACAs is relatively "disorganized" and thus has a high
entropy.

Spatial entropy E = E(b), where b is the size of the sub-block of the
(B/b)-by-(B/b) array of sub-blocks into which the battlefield is
partitioned, and B is the length of the battlefield (see figure 51). ISAAC
performs separate calculations using b = 4, 8 and 16. E(b) is defined as
follows:

b2

m = ' 21ofe ? Pi{b) l°Z2Pi(V »

138

^reducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

where #(b) = N;(b) / N, log2x is the logarithm base-2 of x, N is the total
number of ISAACAs (red + blue) on the battlefield, b2 is the number of
sub-blocks into which the battlefield is partitioned, and the factor
appearing before the summation sign, (21og2b)"\ is a normalization
constant. Note that p{(b) effectively gives the probability of finding an
ISAACA in the i"1 sub-block.

Observe that if a single sub-block contains all the points, then the
spatial entropy has its minimal possible value: E(b) = 0. On the other
hand, if the ISAACAs are all scattered throughout the battlefield in such
a way that p(b) = p = 1/b2 for all sub-blocks i, then the spatial entropy
takes its maximal possible value: E(b) = 1. The closer the value of E(b) is
to zero, the "closer" the ISAACA distribution is to one that is tightly
clustered near a single sub-block. The closer the value of E(b) is to one,
the "closer" the ISAACA distribution is to one that is completely
scattered throughout the entire battlefield.

Figure 51. Battlefield partitioned into an 8-by-8 array of sub-blocks of
size B/8

(B/8)-by-(B/8)
block

8 sub-blocks

*.

8 sub-blocks

For data field descriptions see STATS_9.dat in Appendix E: STATSJLdat
Data Fields.

139

irreducible Seim-Autonomous Adaptive Combat (ISAAC): An ArtificialrLife Approach to Land Warfare

Sample Output

Consider the fairly complex ISAAC evolution depicted in figures 52 and
53. The values of the parameters defining the single-squad red and blue
forces are shown on the left and right of figure 52, respectively. There
are 200 ISAACAs per side and both sides are relatively aggressive: red's
combat threshold? being equal to -3 and blue's to -6. Note also that for
this scenario, both fratricide and reconstitution options have been
enabled, with a reconstitution time trecon = 15 steps. The fratricide
option means that whenever an ISAACA X targets an enemy ISAACA Y
and misses, a friendly ISAACA X' that is near Y can inadvertently be
targeted and hit by X instead. The reconstitution option means that if
an alive (red or blue) ISAACA X is hit (either by enemy or friend) at
time t - so that X becomes injured - but is not hit during any time
between t = x+1 and t = T+trecon, X's state is reconstituted back to alive at

timet = t+t +1. recon

Figure 53 shows a few snapshots of how the initial state shown in figure
52 unfolds in time. One can see that the behavior of these two
"personalities" proceeds in essentially four stages. The first stage
(referring roughly to times t = 1 through t = 20) consists of an initial
internal jostling for position (on both sides) and a steady march toward
the enemy corner. The second stage (between times t = 25 and t = 70)
consists of "close combat" within a tight central cluster of closely packed
red and blue ISAACAs. The third stage (between t = 80 and t = 120) is
marked by a relatively rapid "expansion" of forces outward from the
central region of the battlefield. The fourth, and final, stage (for times t
> 140) consists mostly of small local skirmishes that are distributed
throughout most of the battlefield.

Figures 54-a through 54-b provide a sampling of the kind of
information contained in the statistics output files STATS_l.dat
through STATS_21.dat. Figure 54-a, for example, shows a plot of blue
force strength (expressed as a fraction of the original number of
ISAACAs) as a function of time, plotted for t=l through t=250 (note
that the "snapshots" in figure 53 stop at t=150). Initially, and until the
red and blue forces "collide" at time t~18, the blue ISAACAs are at their
strongest. The bottom-most curve in figure 54-a, which shows the
fraction of injured blues, begins to rise as soon as blue ISAACAs are
targeted and hit by opposing reds. Notice that, because the
reconstitution option has been enabled for this run (see above), the
number of alive blues frequently increases during the course of the
evolution.

Figure 54-b shows a plot of the average distance between red and blue
ISAACAs as a function of time. The curve starts out at a distance d~57
that is equivalent to the initial separation distance between the starting

See ISAACA Combat in Overview of ISAAC for a discussion of combat threshold.

140

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

"boxes" of the red and blue forces. As the two forces move toward their
enemy's flag and thus approach one another, the average inter-force
distance steadily diminishes, reaching a minimum as the two forces
"collide" near the center of the batdefield. The relatively flat portion of
the curve that appears between times t~25 and t~80 corresponds to the
period of intense "close combat" discussed earlier and shown in early
snapshots in figure 53. The curve in figure 54-b then begins a steep
climb from values near ~15 (at t < 80) to values near ~35 (for t > 130),
corresponding to the third stage of the evolution during which there is
a relatively rapid "expansion" of forces outward from the central region
of the batdefield. This third stage is next followed by a second plateau
region (in which the average distance between red and blue ISAACAs is
again relatively constant from t~130 to t~200).

Figure 54-c shows a plot of the average number of red ISAACAs that are
within a distance D=l (lower curve), D=3 (middle curve) or D=5 (upper
curve) of blue ISAACAs. The largest relative numbers, of course, are
found between the times t~25 and t~80 during which the scenario
includes some very close combat near the central region of the
batdefield. Compare the appearance of the plots in figure 54-b and
figure 54-c during the later times t~150 through t~180, which is the
interval of time shordy following the stage in which there is a rapid
"expansion" of forces outward from the central region of the batdefield.
We see that blue ISAACAs find themselves surrounded on average by a
relatively greater number of enemy ISAACAs then before as the red
forces effectively "organize" themselves for further combat after the
"expansion." Notice that there is a second local rise in the average
number of reds within blue corresponding to a small second "plateau"
in figure 54-b between times t~215 and t~230.

Figure 54-d shows the trajectory of the blue forces' center-of-mass
(COM) position. The path of the COM begins at (x,y) ~ (62,62),
corresponding roughly to the center of the "box" containing the initial
distribution of blue forces (see figure 52). Notice how this trajectory
moves almost straight toward the red flag (which is located near the
origin) but then stops and - due to the dynamics between red and blue
forces - effectively doubles back toward the blue flag, never managing to
get closer to the red flag than the coordinates (x,y) ~ (32,32).

Figure 54-e shows a plot of the spatial entropy as a function of time.
Spatial entropy is here computed by partitioning the 80-by-80 batdefield
into an 8-by-8 array of 10-by-10 sub-blocks, meaning that the
"resolution" of this measure is effectively limited to 10-by-10 boxes, (see
discussion in Spatial Entropy above). Recall that spatial entropy can be
used as a crude pattern recognition tool: tight, relatively undispersed
patterns having a low entropy; disorganized, scattered patterns having a
high entropy. The measure is by no means perfect, but it can serve as
useful descriptive tool to summarize and/or compare a large sampling
of runs. In this case, we see that the relatively tighdy clustered initial

141

^reducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

distribution (red in one "box" and blue in another) yields an initial
spatial entropy E ~ .46. It rises a bit for the first few iteration steps (in
the absence of combat) due to the internal 'jostling" of red and blue
forces that widens the initial spread of forces. The entropy attains its
minimal value E ~ .38 around t ~ 30 at the point at which the colliding
red and blue forces have created the tightest cluster of combatants. The
entropy then increases, reaching a maximum of E ~ .72 near t ~ 150
(the middle of the "plateau" region in figure 54-b) as the forces disperse
throughout the battlefield. The entropy then falls back down to smaller
values as the numbers of combating ISAACAs decreases and local
skirmishes become better organized.

Figure 54-f provides an alternative pattern-recognition-like glimpse of
the way in which the battle unfolds in time by plotting the average size
of ISAACA clusters (with no distinction made between red and blue) as
a function of time. Two ISAACAs that are within a distance d=l apart of
each other are said to belong to the same cluster. Since the initial
condition consists of two far-separated random distributions of 200
ISAACAs per side, at time t = 0 the average cluster size is equal to 200. It
drops as the opposing forces move toward their respective goals (and
ISAACAs become temporarily separated as a result of internal 'jostling"
for position), and falls to a local minimum at t ~ 12, which is around the
time the two forces first collide. The average cluster size begins to
increase once again as the opposing forces "bunch up" near the center.
It attains its largest local values between times t ~ 20 and t ~ 35, which
correspond roughly to the period marking the most "intense fighting"
of the scenario (as characterized, for example, by the steepest rise in
the number of injured blues shown in the bottom-most curve in figure
54-a). As the forces are reduced by attrition and begin dispersing
throughout the battlefield, the average cluster size steadily decreases.
Notice, however, that the average cluster size begins decreasing at a
significantly earlier time (t ~ 35) than the time at which forces begin
"expanding" outward (at t ~ 80; see figure 54-b).

142

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An ArtificialrLifeApproach to Land Warfare

CD
83
CM

fa
3
N-3
pa

co co IH to co co in »-I uimisHips
>t r- T-i T-i in CM t-i

ro m co co co
83 i

n ii ii ii n S3 II
iH M S3 CD W S3 S3 W Nintost1

01 0) CO 0) 0) H t- x m v in m »H i
S3 8) S) 81 SI ■P u u
P £ S S £ 0 M II i-4 II II ii II II
Ig IQ IQ IQ ID A tu II II II II n II
u t« t- s- s* (0 X fa 3 3VIHIS
1 1 1 1 1 i a w 1HKSKUU Q »j so i

W fa 3 M U 0<Z Q OiSCEMHCaK SUUISK

d"> ^s

N N
83 S S3 S

w w
S3 S3
CO ^» S3 ^
CM N CM N
\ S3 \ S3

CD CO 83 83
83 TH 8) *H
CM w CM —

IS
CO

X

a
CO

II

a
Ü
<6

^p V)
44 —J *»
3
o 00 1

• E
CM n
LU
_J

t c 5
00 o
1_
o en *. i_
c
o m
2 >„ 3 3
TO

o
Ü Ol
CO <C

I <
1 W
c
CO

o
(0

■o c
CO
CO

_CD
CO
E
CO
l_
CO
D.

c\i
in
2>
3
TO
L_

co
CO
CM

Q
fa
0C

■■■■■■■■I ■■■■■■
■■ ■■■■■■ !■■■■■
■ ■■■■■■■■; min
■■■■■■■■■ II ■■■
■ ■■■■■■ !■■■■«

■ ■ ■■■■■ !>■■■■ ■■■■■■■■■
■■■■■■■■■
■■■ ■*■■■ !■■■■■
■ ■■■■I li min ■■■■■■■■I ■ ■■■ ■ ■■■■■■■ !■■■ ■ ■■■■■■■■ !■■■#■
■■ ■■ II !■■■■■
■III ■■■■!

■■■■■■I ■■■■■
■■ ■■■■■■■■■■■■

III ■■ ■■■■ III

01 e

m P
to en IH m co eo m IH m 01 CD CO S3 S3 CM CO V CD CO H

83 CM 03 co m 1 K

II n n II II S3 II
iH

CO
3
►3

lH HI m in co IH co co rH tO V 83 S3 Z
03 03 0) 03 0) II (1 x IH r- IH en m 1 W
83 03 83 O) 83 +j u U 1
S S S S S O Hi II N* II II II II II H
IQ IQ iQ iff Ifg -c fa II II II II II II
hhhhh 03 X fa 3 Ot/IHEE,
i i i i i 1 <C fa 1 OS 03 05 pa U CJ a J SQ II

t/3 fa X M U sux a fa cc « i-i i-i OS m CUUKPQ

l"> («1

83 83 S 83

W W
83 83
co ^ S3 ^
CM N CM N
\ CD \ 83
83 83 S3 S3
CD ^ CD ^
CM w CM w

4)
U
*
H
II
A
H
V

&
u

■p
(/>
II
A
W
V

c
s
K

I
V
K
II
A
X
V

o
II
A
9
V

09
H

O

A
PH
V

■P
«
IS

ll
A

V

t)
H

«
«
A
II
A
A
V

u
s
SH
-P
W

I
TS
C
«
E
E
O
O
II
A
ej
v

143

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 53. Snapshot views of BATTLE2 . out

•«JS-iArb-

i.:::;-L=:':i

mm

time = 10

time = 55

\ - .(!:*ä-r..

" ■» a IK"-"» "tUr

time = 130

time = 90
•

.: t. "
: ;»• ".:••;::" '• ;:vv:

•- '" 'his—'I-

. a :

.FP;iä:~r

time = 25

•■ "'"flip.,/ sari:*™* .
t .Kirn*"

'III fiMr • "
"Off- •

time = 70
•

«f!::,/•=!:!='"- -
■ ! !- > K .?.:&•*•

.'ii V • *,JI'« * "F

5l>% V "

•

time = 100
•

|!" 1

" i - >& •..:-V .:>■* ..■
.. :i.i:- \::V

;
■ :" ■ ** • "jf ** *
' r s * V

4Tr.
"•- .i.!:,:

time = 115

time = 40
•

•■■- ■'«SUrf' ' ■i-U ff:-::'
t 3 •

t

■

time = 80
•

* r • • " B TV
~ • ••&.:

'• "■' US«"''
v&X' ■»

i *.: *

•

■■:! i:/

j •• -!-..••■.

, -Sr" -'I'""'
i • . : s.

-. • |_ -

1*..'. ■

time= 150 time = 200

144

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An ArtificuMJfe Approach to Land Warfare

Figure 54. Sample statistics measures for BATTLE2.out

Injured Blue

(a) Force Strengths

(c) Number of Red ISAACAs near Blue

(e) Spatial Entropy

(b) Red:Blue Interpoint Distance

40 45 50 SS
Blue Cwtsr-or-Mass x-Coordtnale

(d) Blue Center-of-Mass Trajectory

(f) Average Cluster Size

145

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Taking 2D "Slices" of ISAAC'S Parameter Space

The previous section discussed ISAAC'S built-in data collection
capability, which consists essentially of keeping track of various
quantitative measures of behavior as a function of time. These measures
include force strength, neighbor counts, ISAACA:ISAACA distance
distributions, and center-of-mass position, and includes a few
rudimentary pattern-recognition tools such as cluster-size distributions
and estimates of spatial entropy. While this data arguably goes a long
way to providing important additional insights into "what is happening"
on the notional battlefield - beyond the purely qualitative picture that
emerges from ISAAGAs main graphics display alone - these data are
nonetheless constrained by the same fundamental shortcoming as
ISAAC'S main graphics display. Namely, both provide glimpses of only a
single scenario: a single set of parameters defining the red and blue
forces, and a single spatial disposition of those forces. In order to gain
insight into what ISAAC'S generic behavior is like - i.e., in order to be
able to answer questions such as "What behavioral features are independent
of initial force disposition'?" or "How does the overall behavior change as I
alter, say, blue's sensor range?" - we must be able to (at least) (1) average
over a set of initial conditions, and (b) compare objectively the
behaviors resulting from differing sets of parameters.

Figure 55. Schematic of taking a two dimensional (x^ x2) "slice"
through ISAAC'S N-dimensional parameter space

2D "Slice

To this end, a stand-alone parameter-space mapping program (ISAACJPM;
see table 4) provides a capability to effectively map out the behavior
over a two-dimensional "slices" through ISAAC'S N-dimensional
parameter space (where N is a large number). Assume, for sake of
argument, that each of the parameters that appears in ISAAC'S input
data file under the heading "ISAACA Parameters" represents a single
independent "degree-of-freedom" (or axis) in the total ISAACA

146

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

parameter-space. Even if we were to do away with all parameters having
to do with communications, all command and control functions,
notional defense, fratricide and reconstitution, that still leaves us with a
roughly 28-dimensional parameter space: 12 parameters for defining
the individual components of the personality weight vector (6 alive + 6
injured) + 5 parameters for defining various ranges + 6 parameters for
defining the 6 threshold conditions (3 alive + 3 injured) + 2 parameters
for defining an ISAACA's single-shot probability and the maximum
number of enemy targets that it can simultaneously target. Even
granting that our assumption that each of these parameters can be
treated as an independent parameter is obviously false (many
parameters are interrelated and not all parameters are equally
"important" in defining an ISAACA's overall behavior), an ISAACA's
genome clearly "lives" in a very large dimensional space.

Now, from a conceptual stand-point, a complete "understanding" of
ISAAC'S overall dynamical behavior can be obtained via a complete,
exhaustive sampling of all possible behaviors resulting from all possible
combinations of all possible parameter values. From a practical
stand-point, of course, such an ambitious research program is obviously
much too computationally costly to represent a viable approach.
Instead, we provide two tools for exploring the ISAACian
parameter-space:

1. Genetic Algorithm Evolutions. The first tool consists of using a
genetic algorithm to search through the available parameter
space to find a set of parameters that lead to certain desired
behaviors. This tool described in a later section (see Genetic
Algorithm Evolutions oflSAACA Personalities below).

2. Taking 2D "Slices" of Parameter Space. The second tool,
described immediately below, is essentially a parameter-space
mapper that takes two-dimensional slices through the ostensibly
N-dimensional parameter space, and provides measures of how
well certain mission objectives are met (by one side) for a given
combination of parameters. See figure 55.

As will become clear below, these two tools actually share some
important features and use identical measures of "mission success" to
either navigate through ISAAC'S parameter space (in the case of genetic
algorithms) or provide a quantitative assessment of what a particular
(x,y) "point" in ISAAC'S parameter space represents (in the case of
parameter-space mapping).

147

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

The Basic Idea

The basic idea behind using the program ISAAC_PM to take 2D slices
of ISAAC'S parameter space is summarized as follows. First, by design,
the blue force is fixed throughout a given run. That is to say, once the
blue personality and combat parameters have all been defined - except
for initial force disposition, which is always randomized at the
beginning of a sample run - the blue side is "clamped," as it were, and
remains unaltered throughout a run. The actual "slice" is taken through
the red forces' parameter space.

To this end, the user defines red's personality and combat parameters
in the usual way, except that two special parameters (of the user's
choosing) - x and y - are identified to be the (x,y) coordinates over
which the system's behavior will be sampled. To each (x,y) combination
of variable parameters (all other red parameters remaining constant),
the program associates a quantitative measure of "how well" the red
ISAACAs have performed a user-defined mission, and averages this
measure over a desired number of initial conditions (for both red and
blue initial force disposition). A measure of "how well" the red force
performs a given mission is provided by a well-defined mission fitness.

Because missions and mission-fitness are defined in the next section
discussing genetic algorithms (see Mission Objective in Genetic Algorithm
Evolutions oflSAACA Personalities), we will only briefly introduce the two
concepts here.

Mission

Missions - labeled m -are objective, quantifiable goals that the red force
must attain within a certain time frame, and consist of one or more
mission primitives. Mission primitives might include such objectives as
"get to blue flag as quickly as possible," "minimize red casualties," or "maximize
the ratio of blue to red casualties," among others.

Mission Fitness

Mission fitness, f=f(m), is a numerical measure of how well the red force
has performed its mission. It is defined so that / takes on real values
between zero and one. f(m) = 0 meaning that the red force has been
entirely unsuccessfulin fulfilling mission m;f(m)= 1 meaning that the red
force has been entirely successful in fulfilling mission m. How close the
value of / is to zero or one indicates how poorly or how well,
respectively, the red force has performed a given mission.

148

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 56. Schematic of how ISAAC_PM works

Mission m
+

Red
Personality

P = (Pl x,y pN)

ISAAC PM

"► ™aJe-„ "► Mapper"

Mission Fitness
fxy(m)

The output of the parameter-mapper program is thus a set of mission
fitness values, f^im), for each pair of sampled value of the (x,y)
parameters defining the 2D "slice." Figure 56 shows a schematic.

Pseudo-code

ISAACJPM couples a slighdy older version of ISAAC'S Core Engine with a
basic data-collecting front-end that automatically loops through selected
x and y red ISAACA parameters and averages the mission fitness over a
user-specified number of red and blue initial conditions. In
pseudo-code, the main components of this recipe appear as follows:

read PHASE.dat and PJSAAC files
for x=xmin to xmax

for y=ymin to ymax
for initial_condition=1,icmax

initialize for new run
run ISAAC'S Core Engine
calculate_fitness(initial_condition)

next initial_condition
append new fitness to output file

next y
nextx
close output data file

Concise User's Guide to ISAAC PM

The stand-alone parameter-space mapper program ISAAC_PM uses a
slightly older version of ISAAC'S core engine than the one that is
described in detail in the section Overview of ISAAC. Specifically, the
version of ISAAC that is embedded within ISAAC_PM allows only one
squad per side and excludes all command and control structures. This
minor deficiency will be remedied in future versions.

Starting ISAAC_PM

Assuming that the ISAAC "package" has been installed according to the
instructions given in the section Installing ISAAC, the parameter-space
mapper can be run by going to the appropriate subdirectory on the
hard drive (say, C:\ISAAC>) and typing the command ISAAC_PM

149

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

followed by <ENTER> on the DOS command line. You will see the
opening screen (figure 57), specifying the current version and build
date of the program and a prompt to press <ENTER> to continue.

The next screen prompts for three files (see figure 58): (1)
P_ISAAC.dat, which is the default name of the file that contains a
truncated version of ISAAC'S input data file (see Contents of ISAAC'S
Input File in Concise User's Guide to ISAAC); (2) PHASE.dat, which is the
default name of the file that contains ISAAC_PM-specific data entries
needed to start the run (its contents are described below); and (3)
PHASEOUT.dat, which is the file the user wishes to contain the output
data generated by the impending run (see Contents ofISAAC_PM's Data
Output File below).

Figure 57. ISAAC_PM's opening screen

ISAAC
Irreducible Semi-Autonomous

Adaptive Combat
(Combat 'Parameter-Space' Mapper)

Version 1.1.2
22 April 1997

Andy llachinski
Center for Naval Analyses

4401 Ford Avenue
Alexandria, VA 22302

ilachina@cna.org

Press <ENTER> to continue

After naming the input and output files, the user is next prompted to
select the x-coordinate of the two-dimensional "slice" that will be taken
through ISAAC'S parameter space (see figure 59). The user is asked to
choose from a menu of twenty possible parameters.

150

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 58. ISAAC_PM's file name prompt screen

SPECIFY INPUT FILES

ISAAC input (P_ISAAC.dat):

PHASE Input (PHASE.dat):

SPECIFY OUTPUT FILE

PHASE output (PHASEOUT.dat): P.

Figure 59. ISAAC_PM's prompt screen for specifying the x-coodinate

SPECIFY x-PARAMETER

<1> Number of Red Forces
<2> Weight w1 (Alive Red)
<3> Weight w2 (Alive Blue)
<4> Weight w3 (Injured Red)
<5> Weight w4 (Injured Blue)
<6> Weight w5 (Red Flag)
<7> Weight w6 (Blue Flag)
<8> Sensor Range
<9> Fire Range
<10> Communications Range
<11> Communications Weight
<12> Threshold Range
<13> Advance Threshold
<14> Cluster Threshold
<15> Combat Threshold
<16> Min Distance from RED
<17> Min Distance from BLUE
<18> Min Distance from RED Goal
<19> Probability of Shot
<20> Max Number of Engagements

Selection (Quit = 0) ?

151

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

For example, suppose that the desired x-coordinate is "Number of Red
Forces" (choice <1> in figure 59). After entering a "1" (followed by
<ENTER>), the user is then prompted to specify the minimum value of
this x-coordinate, the maximum value of the x-coordinate, and the total
number of desired samples that will range from the minimal to maximal
selected values during the course of the run (see figure 60). The same
sequence of prompts is then repeated for the y-coordinate. Upon
completing the y-coordinate related series of prompts, the program
displays its main graphics screen and begins the run (see Sample
ISAAC_PM Runs below).

Note that ISAAC_PM effectively reduces the dimensionality of ISAAC'S
total parameter space by setting equal the alive (wia]ive) and injured
(wi,injured) versions of the same component of the personality weight
vector, and doing the same for the advance, cluster, combat and
min-distance thresholds (see ISAACA Adaptability in Overview of ISAAC).

Figure 60. ISAAC_PM's range/sample prompt screen

x-coordinate: Red iSAACAs

Minimum Value = ?

Maximum Value = ?

of Samples = ?

Contents of ISAAC_PM's Data Input File: PHASE.dat

PHASE.dat contains a user-modifiable listing of variables that are used
to control the execution of the parameter-space mapper front-end to
ISAAC. It consists of three separate groups (see figure 61):

• PHASE Parameters, which consists of parameters specifying the
number of red and blue initial spatial configurations to average
over (num_init_conds), the maximum number of iterations
allowed for any one run of a sample (max_time_to_goal), and a
parameter that defines how rapidly the mission fitness function /
falls off from its maximal to minimal values (penalty_power). For
a detailed discussion of each of these entries, see Contents of
ISAAC_GA 's Data Input File: GA_ISAAC.dat).

• Penalty Weights, which includes parameters that assign relative
weight values to each of ten possible mission "primitives." These
weights collectively define the red ISAACAs' "mission" m and
therefore, implicitly, the mission fitness f(m) that ISAACJPM will

152

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

"attach" to the 2D-slice coordinates (x,y). For details see the
sections Mission Objective and Contents of ISAACjGA's Data Input
File: GA_ISAAC.dat in Genetic Algorithm Evolutions of ISAACA
Personalities.

• Termination parameters, which includes parameters specifying
the exact conditions under which a given run will terminate.
The four entries appearing in this group are defined in Contents
ofISAAC_GA 's Data Input File: GA_ISAAC.dat below).

Note that the parameters appearing in PHASE.dat (figure 62) are a
subset of those appearing in the input data file used by the genetic
algorithm front-end to ISAAC (ISAAC.GA, shown in figure 71). If the
reader wishes to run the parameter-mapper program and/or alter any
of PHASE.dat's parameter values, he is urged to first read the section
discussing the genetic algorithm front-end (Genetic Algorithm Evolutions
of ISAACA Personalities).

Figure 61. Sample PHASE.dat input data file

fi:***************************** ******** ■:■;

f.* ;'; ■>• .A "■;1 PHÄ5E;-;:parantete'rss: ; 1
************************************* :

In\M3"nyttalkednds;:: ; :;: :s. 150v :
:maxItrmeLto_gOa1 1H 125 :::
: pe n a Tty^powe rl ... ,Z

: * . - ;;-:;::;.;:x.;-:pena:l%j:vie:i:ghts (1-100)■[:: i
*****************:***+****************

Iw 1 ;it i me^to_g pal'; '.. 0 ■'
I w2^f;r tend 1 y_l o s s■] 1;:;: ■ •'.::;:;: 1:0
SwB^enemyyioss ;-i ■■■-;:y.}i-W\.
: iw4Jre/dJtö_ib1 üe^surv i v al_r:a ti 0; .<;0; ?;
s w5.|f:r:r e n$\yMW.Zo_fi n etiiy^f 1 ägY;1;1;;:1Iflj:
! ■tt6^enemy_COß_.:f;r i,end 1 y_f Ia;g 1: 1 ; 0 ■:*
i;w7_frifp 1 .jrjvei ar_e«en)y7Y_f1 ag■ ;:;1;; 0.": ■;.
1w8^nemy1_rtearjf:rlenäTyl^ag;;:^M$:W'?:-:

: W9ir|0ratr§ct'tfejh'tts x>| ;:: 1101 ;1
: «lOliblüe^fratricidOitsI:: illlO:
: *************************************

■■:::*.***************************-***+*****V-V:--:

: ternii:na:tion_code?:- ; ji

containment number
:... red _£M_t o_B F_f r a c

10 :

.5; ::■-:■.

Contents of ISAAC_PM's Data Output File: PHASEOUT.dat

Let x and y be the representative parameters defining the 2D "slice" of
ISAAC'S parameter space. The parameter x, for example, might be

153

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

"Number of Red ISAACAs " and y might be "Probability of Shot;" x and y can,
of course, be set equal to any of the twenty parameters listed on
ISAAC_PM's prompt screens for specifying the x and y -coordinates; see
figure 59.

Suppose that the user has decided to take Nx samp samples of x between
the values *min = xi and xmax = xNvmp (so that x1+1 = x, + A, where A = (xmax

- *min) / N*,samp)> and to teke N,, samp samples of y between the values ymin =
y, and ym3X = xjy^, so that yM = yx + A, where A = (ym3x - ymin) / N^ mp.

ISAAC_PM's output data file consists of the following three (unlabeled)
columns, in the following format:

fx1,y1 (m)

N; fx1'VNv<m)
Viy fx2,yi y(m)

x2 VNy
f X2'VN^,n> I

XNX V1 fXN,yi<m>

XNX VNy fxN'yN<m)

Sample Graphics Display

Once the user has selected the name of both input files and the
parameter-mapper's output data file (see figure 58), ISAAC_PM runs
through its initialization routine and displays the main graphics page.

A sample graphics page is shown in figure 62. Note that this figure
assumes that the hot-keys 'B' (for Battle-Space), and 'F (for Fitness)
have both been pressed (see "Hot-Key" Menu below). The display is
broken up into six separate regions:

• A banner-display region, located at the top of the display and
containing a large bold font, which identifies the program and

154

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

release version, and a reminder of which two parameters have
been selected as the x and y axes of the 2D "slice" for this run.

• A text-based progress-report region, located directly beneath the
banner-display region, which provides an update of the progress
made thus far during the run: Sample refers to the current sample
number S being processed (expressed as a fraction of the total
number of samples StotaI = Nx * Ny: S/StotaI), Iteration refers to the
current initial condition C (expressed as a fraction of the total
number of initial conditions that the program will average the
fitness value over, C/Ctota!), Time refers to the current time step t
of the sample that is being run for the C* initial condition for the
5th sample (expressed as a fraction of the maximal allotted time
for this run, t/ttotal), and the »-value and Rvalue give the current
values of the x and y parameters selected for this run,
respectively.

• A battlefield region, located near the bottom right of the display,
which contains the battlefield view of state of the current sample.

• A fitness-parameters region, appearing to the bottom left of the
battlefield, which contains a reminder of what mission fitness
measure is being used for this run (see Mission Objective in
Genetic Algorithm Evolutions oflSAACA Personalities).

• A "hot-key" menu region, appearing at the bottom of the display,
which contains a short menu of "hot keys" that the user can use
to interrupt a run at any time to perform a variety of functions:
"B" (for Battle-Space) toggles the graphics display of the
notional battlefield,23 "F" (for Fitness) toggles the display of the
mission objectives defining fitness for this run, along with a
reminder of how each sample during this run is to be
terminated, and "Q" (for Quit) closes all output data files
(saving intermediate results) and quits the program.

23 Note that such a display is time-wise somewhat costly (slowing down apparent
computation speed about 40%). Because speed is of the essence in genetic algorithm
evolutions (see below), this option should be used sparingly to obtain glimpses of how
a particular sample is doing.

155

Irreducible Semi-Autonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

CJ

c
o

■ IBB*

CD <D
< CD

CO Ü £
0
>

1— </) ö
LU

Ln in in
tflHN

CO 03

Q.
a.

CD CD
DC«

\ \ \
rH *< *<

CO

S S

CO iH

< CD CD
II II II II II

2
1

±2 -H5

cü cd
O

0) +J
01 01

UJ c c a in oi
cue

« 0

Q.
co

to
<
X

■Ö-0

9 °
1 1
X 3

Q. o u
1 1

Ü

Q. Ü X >,
ro

<
c < ro
E to
(A ^™~

2
0.

1 1 o
2
CO

CM'
CD
<D u.
3

U-

2Q ^Q ^Q QQ QQ Q3 2Q ^Q Q3 QQ
CD GQ ^S ^D ^D CD ^S CS GD CS

CD CD CD CD CD CD *H CD CD CD

K
W
H
W
S

«
<r

H
Z
H
I-H

in ft
« i«
H H

o a» "8
- 3 «
■WHS.
* A
h O

e +J

3 S
H E CJ

H ffl Ü
8 «J \ 0
e t s ■« ■« s
.* 1} H JJ 0) H
H PC n K as a

in ft
« I«
H H
«4 <ta

H
(6
O
ft "
e M

K 0

•H Ü
Ü «

•-< *<
<W *

SH <*

0
IS 3
U H
K n

o

s

0)

■IN

o

0 =
e
(H
09

3
<S
II

9
v

H
Vs
a
e

■u

fa
II
A
fa
V

U
u
9
I
u
H
<P
U
it
B
II
A «
V

156

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Output

Sample #1: Forward Advance

One of the first emergent-like characteristics one notices about
evolutions in ISAAC is that a cluster of mutually attracting ISAACAs - for
example, a cluster composed of alive red ISAACAs, all of whom have a
positive weight for moving toward alive red ISAACAs - typically does not
move as quickly (toward the enemy goal, say) as the individual ISAACAs
that make up that cluster would move toward the goal by themselves. In
other words, a cluster attains an effective cluster-vefocity vdusK1. that is in
general not equal to the velocity vISAACA that the individual ISAACAs
making up that cluster would have if they were not part of the cluster.

To see this using ISAAC_PM, consider a scenario that unfolds on a
50-by-50 notional battlefield (i.e., set battle_size = 50 in P_ISAAC.dat;
see above) in which there are no blue ISAACAs at all (i.e., set num_bhies
= 0 in P_ISAAC.dat), red starts out confined to a 10-by-10 "box" near
the lower-left corner of the battlefield, and red's mission is simply to "get
to the blue flag as quickly as possible" (i.e., set wl_time_to_goal = 1 and
all other weights w2 - wlO to zero in PHASE.dat). In order to focus the
scenario entirely on examining the effects of the cluster threshold, set
the advance threshold (i.e., ADVANCE_num in P_ISAAC.dat) to zero, so
that all red ISAACAs are able to move toward the blue flag even when
they are locally "alone." Also, let the run terminate either when the first
red ISAACA reaches the blue flag or when a maximum time t = 125 has
been reached (i.e., set termination_code = 1 in PHASE.dat). See figure
63.

Figure 63. Schematic of initial state for sample run #1

blue flag

10-by-10
red start box

Since the red ISAACAs start in a "box" whose center is about 55 lattice
sites away from the blue flag (positioned at coordinates (x,y) = (49,49)),
the minimal number of iteration steps that it must take red to reach the

157

Irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

flag is also about 55 steps. The time may be somewhat smaller or larger
than this value, depending on exactly where in the box the red ISAACA
that reaches the blue flag first actually started its run from the start box.
The mission fitness / for this scenario is equal to one if the red force
reaches the blue flag as quickly as possible (that is, in a time that it
would take red if red's red:red weights wl and w3 were equal to zero).
The fitness /= 0 if no red ISAACA reaches the blue flag before t = 125.

This first output sample, shown in figure 64, consists of showing the
result of running ISAAC_PM using the number of red ISAACAs as the
«-coordinate of the 2D "slice" (with the value of x ranging from 1 to 50)
and the "cluster constraint threshold' as the ^coordinate (with the value of
y ranging from 0 to 50). Figure 64-a shows a three-dimensional plot of
the fitness f(x,y) as a function of (x,y). Figure 64-b shows a contour plot
of the same function, in which lighter shades of gray represent high
fitness (near/~ 1) and darker shades represent low fitness (near/~ 0).

Figure 64. Output of ISAAC_PM for sample run #1

(0
o

C3
Q
0)
E

to
a)

<

CO

■a
a)

OS

1 3
z

**»;

CLUSTER Constraint Threshold

(a) (b)

Notice that when the value of the cluster constraint, C, is very small (less
than 5), the red force requires only the minimal time to get to the blue
flag (i.e., /- 1), regardless of the number of red ISAACAs. This is
because the ISAACAs effectively must spend little or no "time" on any
"internal jostling" for position, and are able to focus entirely on moving
toward the blue flag. However, higher values of C generally force the
red ISAACAs to spend more time on this internal jostling. The result is
that for scenarios in which there are more than five reds present, there
is a critical dynamical threshold of the cluster threshold - call it Cc -
such that for values of the constraint threshold C < Cc, f~ 1 and for C >
Cc, /is less than 1 and decreases with increases C. In other words, above
a certain value of the constraint threshold, and depending on the

158

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

number of red ISAACAs, the red force becomes increasingly less adept
at making it to the blue flag with increasing C.

Sample #2: Red Offense

As a second example of how ISAAC_PM can be used to explore a 2D
slice of ISAAC'S parameter space, consider a scenario in which red's
offensive capability is tested. This time both sides start out with 50
ISAACAs each, and red's mission objective is to get as many red ISAACAs
within a distance D=12 of the blue flag as possible. Blue defends with a
personality defined by Wbiue = (0,10,0,10,0,0); i.e., blue "sees" only the
enemy and does not distinguish between alive and injured reds. Blue's
combat threshold is equal to negative 3 so that blue is fairly aggressive,
and blue's sensor and fire ranges are rs = 4 and rF = 3, respectively. Red
"attacks" with a more well-rounded personality, defined by the weight
vector Wred = (10,40,10,40,0,50). Red's sensor and fire ranges are
equal to the blue forces'. Combat ensues for a maximum 125 iteration
steps on a size 50-by-50 notional battlefield.

Figures 65-a and 65-b show the output of ISAAC_PM for this scenario,
using red's single-shot probability, P^, as the x-coordinate of the 2D "slice"
(with the value of x ranging from 0.001 to 0.015; note that Pblue = 0.003)
and the "combat threshold' as the coordinate (with the value of y ranging
from -25 to 25). Figure 65-a shows a three-dimensional plot of the
fitness f(x,y) as a function of (x,y). Figure 65-b shows a contour plot of
the same function, in which lighter shades of gray represent high fitness
(near/~ 1) and darker shades represent low fitness (near/~ 0).

Figure 65. Output of ISAAC_PM for sample run #2

■0
0

JZ m
ID fl)
£

/ £ !?
0

m
5.
O
O

10

0.002 0.004 0.O06 0.0O8 0.01 0.012 0.014

Single-Shot Probability

(a) (b)

Figure 65 shows an interesting non-monotonic behavior. In words, for
single-shot probabilities Pred > 0.00 , red performs this particular

159

irreducible Semi-Autonomous Adaptive Cömbat (ISAAC): An ArtificidlrLife Approach to Land Warfare

mission "best" - as defined by the lighter colored regions in figure 65-b
- by being neither too aggressive (with large negative values of combat
threshold) nor too timid (with large positive values of combat
threshold).

Sample #3: Red Defense

As a third, and final, example of how ISAACJPM can be used to explore
a 2D slice of ISAAC'S parameter space, consider a scenario in which
red's defensive capability is tested. As in the previous example, both sides
start out with 50 ISAACAs each, but this time red's mission objective is
to maximize blue casualties near the red flag. Red's fitness/~ 1 only when
red is able to kill all (or most) of the blue ISAACAs that approach the
red flag. Red defends its flag with a personality defined by weight vector
ww = (10,40,10,40,0,0), meaning that red ISAACAs "react" to both
friendly and enemy ISAACAs, but that they do not "see" either flag.
They are initially positioned close to the red flag, as in both previous
sample runs (see figure 63). Blue attacks with a personality defined by
yvblue = (10,40,10,40,0,50), which is the same as red's except that blue
also "sees" the red flag. Blue's sensor and fire ranges are rs = 4 and rF =
3, respectively, its combat threshold is equal to negative 3 (so that it is
fairly aggressive), and its single-shot probability Pblue = 0.005. Combat
ensues for a maximum 125 iteration steps on a size 50-by-50 notional
battlefield.

Figure 66. Output of ISAAC_PM for sample run #3

1 10 .e

I-

O o

6 8 ID 12 14

Sensor Range

(a) (b)

Figures 66-a and 66-b show the output of ISAAC_PM for this scenario.
Figure 66 uses red's sensor range as the «-coordinate of the 2D "slice"
(with the value of x ranging from 1 to 15) and the "combat threshold' as
the coordinate (with the value of y ranging from -25 to 25). Figure
66-a shows a three-dimensional plot of the fitness f(x,y) as a function of

160

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

(x,y). Figure 66-b shows a contour plot of the same function, in which
lighter shades of gray represent high fitness (near/~ 1) and darker
shades represent low fitness (near/~ 0).

Figure 66 shows that the red force does not perform its mission very
well anywhere within this particular 2D "slice" of the total parameter
space, except within a relatively small, but well-defined, region (i.e., the
"hump" in figure 66-a and the lighter-colored region in figure 66-b).

161

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Genetic Algorithm Evolutions of ISAACA
Personalities

As mentioned in the introduction to this paper, ISAAC has been
designed with a view towards eventually encompassing three separate
but mutually overlapping classes of run modes:

• Fixed Rules, in which there is no "learning" and ISAAC is run
using a fixed set of local rules applied at each time step. This
mode is well suited for quickly playing simple "What iß"
scenarios, and can be used to "search" for interesting emergent
behavior.

• Fixed Strategies, in which ISAAC is run using a fixed set of
personalities (as in the fixed rule mode) but using rules that have
been "evolved" off-line specifically to perform a given mission.
Unlike the fixed rule mode, in which ISAAC is used to explore
how an arbitrary set of parameter values unfolds in time, the
fixed strategy mode involves a focused automated search for the
personality "best" suited for performing some well-defined
mission.

• Adaptive Learning, in which ISAACAs use real-time heuristic
adaptive learning strategies to "discover" new rules as scenarios
unfold in time.

The ISAAC that has been described thus far has been firmly, and
exclusively, rooted in the first - fixed rule - mode. The general
"template" for using ISAAC has heretofore consisted of (1) choosing
red and blue personalities (sensor and fire ranges, personality weight
vectors and/or any additional movement constraint rules), (2) defining
the initial spatial disposition of forces for the two sides, possibly
throwing in some notional terrain to complicate the battlefield, and (3)
running ISAAC to see what pattern of behavior unfolds.

From the point of view of trying to answer the basic question motivating
this study - "Can land combat be described as a complex adaptive system?" (see
Introduction) - such a simple-minded "anecdotal" approach is well
suited. Even the few illustrative runs shown in the Sample Runs section
provide strong evidence that many "high-level" behaviors such as
penetration, clustering, encirclement, defensive posturing, and so on,
can actually be thought of as naturally emergent behavioral patterns
stemming from a local, nonlinear and decentralized collective
dynamics. The short answer to the above question is, therefore, a very
defensible "yes." However, from a larger perspective, wherein one's

163

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

interest lies more in using a multiagent-based simulation of combat to
develop an analyst's toolbox for identifying, exploring, and possibly
exploiting emergent patterns of behavior, such purely anecdotal
evidence cannot suffice. The real question is, "Now that it has been
demonstrated that land combat can be described as a complex system, so what?
What do we do with this insight?" This section describes the first baby-step
that ISAAC can be taught to make toward addressing this real question:
to use a Genetic Algorithm (GA) to evolve the "best" personality for
performing a specific mission; i.e., to evolve tactics from the "ground
up." This paper thus next describes ISAACs first foray into a fixed
strategy run mode.

Genetic Algorithms (GAs): Brief Overview

GAs are a class of heuristic search methods and computational models
of adaptation and evolution based on natural selection. An overview of
GAs, along with some sample problems, is provided in appendix B.

In nature, the search for beneficial adaptations to a continually
changing environment (i.e., evolution) is fostered by the cumulative
evolutionary knowledge that each species possesses of its forebears. This
knowledge, which is encoded in the chromosomes of each member of a
species, is passed from one generation to the next by a mating process
in which the chromosomes of "parents" produce "offspring"
chromosomes.

GAs mimic and exploit the genetic dynamics underlying natural
evolution to search for optimal solutions of general combinatorial
optimization problems. They have been applied to the Traveling
Salesman Problem, VLSI circuit layout, gas pipeline control, the
parametric design of aircraft, neural net architecture, models of
international security, and strategy formulation.

While their modern form is derived mainly from John Holland's work
in the 1960s [24], many key ideas such as using "selection of the fittest"
like population-based selection schemes and using binary strings as
computational analogs of biological chromosomes, actually date back to
the late 1950s. More recent work is discussed by Goldberg [25], Davis
[26] and Michalewicz [27] and in conference proceedings edited by
Forrest [28]. A comprehensive review of the current state-of-the-art in
genetic algorithms is given by Mitchell [29].

The basic idea behind GAs is very simple. Given a "problem" - which
can be as well-defined as maximizing a function over some specified
interval or as seemingly ill-defined and open-ended as evolution itself,
where there is no a-priori discernible or fixed function to either
maximize or minimize - GAs provide a mechanism by which the
solution space to that problem is searched for "good solutions." Possible

164

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

solutions are encoded as chromosomes (or, sometimes, as sets of
chromosomes), and the GA evolves one population of chromosomes
into another according to their fitness by using some combination
(and/ or variation) of the genetic operators of reproduction, crossover and
mutation.

Each chromosome is usually defined to be a bit-string, where each bit
position (or "locus") takes on one of two possible values (or "alleles"),
and can be imagined as representing a single point in the "solution
space." The fitness of a chromosome effectively measures how "good" a
solution that chromosome represents to the given problem. Aside from
its intentional biological roots and flavoring, GAs can be thought of as
parallel equivalents of more conventional serial optimization
techniques: rather than testing one possible solution after another, or
moving from point to point in the solution phase-space, GAs move from
entire populations of points to new populations.

Reproduction makes a set of identical copies of a given chromosome,
where the number of copies depends on the chromosome's fitness. The
crossover operator exchanges subparts of two chromosomes, where the
position of the crossover is randomly selected, and is thus a crude
facsimile of biological sexual recombination between two
single-chromosome organisms. The mutation operator randomly flips
one or more bits in the chromosome, where the bit positions are
randomly chosen. The mutation rate is usually chosen to be small.

While reproduction generally rewards high fitness, and crossover
generates new chromosomes whose parts, at least, come from
chromosomes with relatively high fitness (this does not guarantee, of
course, that the crossover-formed chromosomes will also have high
fitness; see below), mutation seems necessary to prevent the loss of
diversity at a given bit-position. For example, were it not for mutation, a
population might evolve to a state where the first bit-position of each
chromosome contains the value 1, with there being no chance of
reproduction or crossover ever replacing it with a 0.

A solution search space together with a fitness function is called a. fitness
landscape. Eventually, after many generations, the population will, in
theory, be composed only of those chromosomes whose fitness values
are clustered around the global maximum of the fitness landscape.

The Basic GA Recipe

Although GAs, like cellular automata, come in many different flavors,
and are usually fine-tuned in some way to reflect the nuances of a
particular problem, they are all more or less variations of the following
basic steps:

165

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An ArtificicürLife Approach to Land Warfare

• Step 1: begin with a randomly generated population of
chromosome-encoded "solutions" to a given problem

• Step 2: calculate the fitness of each chromosome, where, fitness is
a measure of how well a member of the population performs at
solving the problem

• Step 3: retain only the fittest members and discard the least fit
members

• Step 4: generate a new population of chromosomes from the
remaining members of the old population by applying the
operations reproduction, crossover, and mutation (see figure 91 in
appendix B)

• Step 5: calculate the fitness of these new members of the
population, retain the fittest, discard the least fit, and re-iterate
the process

This basic five step algorithm will be adapted to simple
"mission-specific" ISAAC scenarios in the next section.

Genetic Algorithms : Adapted to ISAAC

Figure 67 shows a schematic of the general kind of "GA problem" in
ISAAC. In simplest terms (that will be made more precise shortly), the
problem is this:

Given a fixed BLUE force (except for blue's initial spatial
distribution on the battlefield), and a well-defined mission
objective for RED, the GA's task is to evolve a personality
for the RED force that is "best able" to satisfy the objective.

The phrase "best able" here means a red force that performs best
according to some well-defined measure of mission fitness (see below).

To "solve" this problem, a pool of initially randomized red ISAACA
personalities (shown at the bottom left of figure 67) is evolved in time
according to the basic GA recipe defined above. Each personality is
defined by a unique ISAACA chromosome, consisting of N genes (see
below). The "fitness" of each chromosome (and, hence, each
personality) is determined by how well that personality has performed a
certain user-defined mission (see Mission Objective below).

166

/irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 67. Schematic of the GA "problem" in ISAAC

Blue
Personality

Fixed

Personality Chromosome

The personality, P/t), of the i* red ISAACA in the personality pool at
time t, is defined by a unique ISAACA chromosome, C{(t), defined by

Ci(t)=g1 g2 ■■•gN'

where g- is the j* gene. In the current version of ISAAC_GA, there are

a total of N=45 genes, though not all are necessarily used.

Table 9 provides a description of each of the 45 genes. Note that, unlike
some common textbook GA examples (such as the illustrative example
discussed in Appendix B), the chromosome is not a binary-valued string
that consists only of O's and l's. Instead, each gene is real-valued, and any
appropriate translations to integer values and or binary toggles (on/off)
are performed automatically by the program.

For the most part, each gene encodes the value of a basic parameter
defining the red force. For example, g1 encodes red's sensor range, g,
encodes red's fire range, and so on. Some genes - for example, the odd
numbered genes between g. and g27 - encode the sign (+ or -) of the
immediately preceding gene, but not the actual value. Thus, the actual
value of each of the components of red's personality weight vector, for
example, is actually encoded by two genes; one gene specifying the
component's absolute value, the other gene defining its sign. Note also
that the lighter colored genes (genes g, through g35) are ahoays used;
that is, they are always a part of the genotype specifying the red force.
The more darkly colored genes (genes g36 through g42 and genes g43, g44

and g4.) are used only if certain software flags are set in the data input
file fo/lSAACjSA (see ISAAC_GAs User's Guide for details below).

167

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Table 9. ISAACA Chromosome (see text)
Gene Function

. ^:-1-.K sensor range
-:V :.2-:---::: fire range

.[I -':: :,:■:,: threshold range
■-,:■::: :;* :;■::.::■.;■• ■:■ alive red:alive red weight (wl)

•■./■:■: ;5 ;•■::: sign (+ or-) of wl
:-xv.-f::?:::--g .:.■:;:;:? alive red:alive blue weight (w2)
:::.:;::::::.':; 7 '.V. :::.:.:,::, sign (+ or-) ofw2

8 alive red:injured red weight (w3)
: ;v:::": :::':&.:::: ::■::;•:: sign (+ or-) ofw3

:",:■. 10:::;::-'- alive redtinjured blue weight (w4)
:;;...; :ll^::. sign (+or-) of w4
■■■:^ :-,:;I2'-::*,:

::-> alive red:red flag (w5)
13 sign (+or-) ofw5

:..■.::; ::.:::.'.:14--:.:::■-:- alive red:blue flag (w6)
:■::■ :V::15/:■■"::". sign (+ or-) ofw6

^._ . ■

injured red:alive red weight (wl') 16
17: sign (+ or-) of wl'

■::-:?;:--,i8::^:^ injured red:alive blue weight (w2')
■:"■". :.:-::-M9:"-::^.::::::::: sign (+ or-) ofw2'
--::--.:---20 injured red:injured red weight (w3')

21 : : sign (+ or-) ofw3'
?Vi-::'-:"-.::!22: s injured redünjured blue weight (w4')

23 sign (+ or-) ofw4'
24 injured red:red flag (w5T)

::■:--■;■'.25::-:'::'.::- sign (+ or-) ofw5'
26 injured red:blue flag (w6')

:..V-:;:27--;:.::,^ sign (+ or-) ofw6
y::^W^^ alive ADVANCE threshold

29 alive CLUSTER threshold
::-:-:;30,::>;: alive COMBAT threshold
W^SI:' - sign (+ or -) of gene 30

32 injured ADVANCE threshold
;:.:.:::v33: ::::-:- injured CLUSTER threshold

^■-:.:-:-:34 :\& injured COMBAT threshold
sign (+ or-) of gene 34 35

36' ' min_dist_flag
37 alive redxed min distance
38 alive red:blue min distance
"0 alive red:red flag min distance
40'••-' injured red:red min distance
41 injured red:blue min distance

!-.42 injured red:red flag min distance

?C 43?.' •" size of initialization box

.. 34 x-coordinate of initialization box

. ..':::::'1> " :i:: y-coordinate of initialization box

168

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Mission Objective

The mission objective, or fitness, is a measure of how well red ISAACAs
have performed a user-defined mission. Typical missions might be to
"get to blue flag as quickly as possible," "minimize red casualties," "maximize the
ratio of blue to red casualties," and so on, or some combination of these.

More specifically, the user - who, for discussion purposes, can be
thought of as a Supreme Commander (SC) - can assign up to ten
weights - 0 < w\, w%,..., w\§ < 1 - to represent the relative degree of
importance afforded to a particular mission objective "primitive," mx

(see table 10 and discussion below). (At this introductory level, of
course, the list of mission primitives is still fairly short and simple,
though it is flexible enough to enable the user to define many
non-trivial objectives.) The actual mission objective, or fitness function,
M, is a weighted sum of mission primitives:

M= ty^mi+a/g^H htyjo^io-

Table 10. A description of GA weights

Description

minimize time to goal

minimize red (i.e. friendly) casualties

maximize blue (i.e. enemy) casualties

maximize red-to-blue (i.e. friendly-to-enemy)
survival ratio

minimize red (i.e. friendly) center-of-mass
distance to blue (i.e. enemy) flag

maximize blue (i.e. enemy) center-of-mass
distance to red (i.e. friendly) flag

maximize number of red (i.e. friendly) within an
SC-defined distance of the blue (i.e. enemy) flag

ws m8 minimize number of blue (i.e. enemy) within an
SC-defined distance of the red (i.e. friendly) flag

w9 m9 minimize number of red fratricide "hits" (i.e. on
friendly side)

wJ0 m10 maximize number of blue fratricide "hits" (i.e. on
enemy side)

For example, a simple mission objective might be to "get to the blue flag
as quickly as possible," in which case w1 = 1 and M = mv If, in addition, the

169

GA
Weight

Mission
Objective

"Primitive"

wi rrij

w2 m2

w3 m3

w4 m4

ws ms

W6 m6

w7 m7

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

SC wishes to "minimize red losses" (defined by primitive m2), but still cares
more about minimizing the time it takes red to get to the blue flag than
about casualties, the SC might set wt equal to 3/4 and w2 = l-a/; = 1/4.
The total mission fitness in this case is then given by M = (3/4) mt+ (1/4)
m2. A more complicated mission objective might be to simultaneously
satisfy several mission primitives:

• get as many red ISAACAs within a certain range of the blue flag as
possible (defined by m7)

• keep blue forces as far from red flag as possible (defined by m6)

• minimize red casualties (defined by m2)

• maximize red to blue losses (defined by m4)

• minimize red fratricide (defined by m9)

so that, if each of these primitives is afforded equal weight, the
composite mission objective is in this case given by M =
(1/5) (m2+m4+m6+m7+m9). Of course, not all such composite missions
may make sense, or lead to red force personalities that are able to
perform them to a desired (i.e., SC-prescribed) fitness level. It is the
SC's task to ensure that mission objectives are both logically sound and
amenable to "solution" (see GA Sample Runs).

Before providing a bit more detail about each of these ten mission
primitives, we first make a general technical comment concerning what
"function" is really being maximized. The user may have noticed that
half of the GA weights refer to mission primitives that involve functions
whose values must be minimized (mr m2, m5, ms and m9) and half refer to
primitives that involve functions whose values must be maximized (m3, m4,
m6, m7 and mI0). In fact, all mission primitives are represented within
the program by a function that takes values between zero
(corresponding to zero fitness) and one (corresponding to maximum
fitness) and that the GA attempts to maximize. The result is that while it
may be more intuitively natural to refer to some mission primitives
(such as m, = "minimize time to goal") in terms of a quantity that must
be minimized, in fact, all primitives are actually defined inside of the
program in such a way that the GA consistently tries to maximize their
fitness.

The general template for how each primitive is treated internally by the
program is as follows. First, for each primitive mP the minimal (=xmin)
and maximal (=xm3X) possible values for the pertinent parameter x is
identified. For example, for my = "minimize time to goal" the pertinent
variable is x = "time to goal;" for m2 - "minimize red casualties" the
pertinent variable is x = "number of red casualties," and so on. Next, a
simple function f=f(x) is defined that takes on values between zero and

170

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

one so that/(xmin)= 0 corresponds to "minimal fitness" and/(xmax)= 1
corresponds to "maximal fitness:"

/= 1 (*max #min) /

where the (the user-defined) power n (see penalty_power in Contents of
ISAAC_GA's Input Data File) determines how rapidly/ falls off from its
maximal to minimal fitness. In general, the closer the value of/ is to
the value 1, the "better" the red ISAACAs are said to have performed
the particular mission primitive that / is the fitness function for. See
figure 68.

Figure 68. Schematic for fitness function f (corresponding to mission
primitive m) that is internally maximized by the program

f=(i->ax:x\)n

max

pertinent parameter for mission primitive m

The next few sections provide a self-contained reference for each of the
ten mission primitives and the corresponding functions that the GA is
asked to maximize.

Mission primitive m1

The first mission primitive consists of minimizing the time to goal. The
user can define an auxiliary condition triggering the red-at-goal flag by
requiring that a certain number of red ISAACAs must be within a range
R of the blue flag (see termination_code in Contents oflSAACjGA's Input
Data File).

The pertinent parameter for m, is tG = "time to goal." The minimal
possible value of tG, tG>min, is determined by computing how much time
it would take an ISAACA that is closest to the blue flag to get to the flag

171

irreducible Semi-Autonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

if there were no other ISAACAs on the battlefield. The maximum value,
tG>max, is set by the user.

The fitness function for m1 is given by/; = ((tG,max - tG)/(tG,max - tG,min))n.
Notice that if the red ISAACAs reach the blue flag only at the maximum
allotted time, their mission fitness is zero. Conversely, if they reach the
flag in the minimal possible time, their fitness is one.

Mission primitive m2

The second mission primitive consists of minimizing the total number
of red casualties.

The pertinent parameter for m2 is ^ = "number of red ISAACAs at time
t." Note that no distinction is made between alive or injured ISAACAs.
The minimal possible value of R<, R^, is equal to zero, while the
maximum possible value is R^ = RQ, or the total number of red
ISAACAs at time t = 0.

The fitness function for m2 is given by j^ = (Rj. / Rg)", where T is the
termination time for the run (which can vary depending on the selected
termination condition; see termination_code in Contents of ISAAC_GA's
Input Data File). Notice that if red suffers no losses at all, so that Rj. = R,,,
then ^2 = 1. Conversely, if all red ISAACAs are lost, then their mission
fitness for this primitive is zero.

Mission primitive m3

The third mission primitive consists of maximizing the total number of
blue casualties.

The pertinent parameter for m2 is Bt = "number of blue ISAACAs at
time t." Note that no distinction is made between alive or injured
ISAACAs. The minimal possible value of Bt,, Bmin, is equal to zero, while
the maximum possible value is Bmax = B0, or the total number of blue
ISAACAs at time t = 0.

The fitness function for m3 is given by^ = (1 - BT / B0)
n, where T is the

termination time for the run (which can vary depending on the selected
termination condition; see termination_code in Contents of ISAAC_GA's
Input Data File). Notice that if blue suffers no losses at all, so that BT =
B0, then, from red's point of view, the mission fitness is minimal, zndf3

= 0. Conversely, if the red ISAACAs have successfully killed all blue
ISAACAs - so that BT = 0 - then their mission fitness is maximal, and f3

= 1.

Mission primitive m4

The fourth mission primitive consists of maximizing the ratio between
red and blue casualties.

172

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

There are two pertinent parameters for m4: R, = "number of red
ISAACAs at time t" and Bt = "number of blue ISAACAs at time t." Note
that no distinction is made between alive or injured ISAACAs. The
minimal possible values of R^ and Bt, are equal to zero, while the
maximum possible values are R^ = B0 and Bmax = B0, or the total
number of red and blue ISAACAs at time t = 0.

The fitness function for m4 is given by

■ßo-2 i (RT/RQ \ , Bo
/4=/4(%,ßT)=(^|)"[gEf) ^.Bo-! J\BT/BO J BO—1 J

where T is the termination time for the run (which can vary depending
on the selected termination condition; see termination_code in Contents
of ISAAC_GA's Input Data File). This fitness function is defined to give
intuitively reasonable values for some extremal values. For example,
^(Rj.=0, BT) = 0 for any value of BT, reflecting the intuition that if the
entire red side is killed, the mission fitness is minimal, regardless of the
number of remaining blue forces. If the fraction of remaining forces is
equal on both sides, so that, say, Rx/Ro = BT/B0 = p, then /^(pR^pB^ =
1/2, reflecting the intuition that if red only keeps pace with blue
casualties (but that, perhaps, both sides have suffered some casualties),
the mission fitness lies somewhere halfway between its minimal and
maximal values. Finally, if the number of red ISAACAs at time t = T is
equal to the initial number of red ISAACAs while the number of blue
ISAACAs has been reduced to one,24 the mission fitness approaches its
maximal possible value: f4.{R-T = Ro,BT~ 1) -*• 1 • Intermediate values
of Rj. and BT yield values for f4 between zero and one.

Mission primitive m5

The fifth mission primitive consists of minimizing the average red
center-of-mass distance to the blue flag.

The pertinent parameter for ms is d = "distance between the
center-of-mass of the red force and the position of the blue flag at time
t." The xml CM and yral m coordinates of the red center-of-mass are defined
by

Rt Rt
*red,CM(') = "5" X xTedß) and 3>red,CM(Ö = öZ 3>red,i(') >

' j=l ' j=l

where xre4i(t) and yredi(t) are the x and y positions of the i* red ISAACA
at time t, respectively, and i^ is the number of red ISAACAs at time t.

24 The value "1" is the minimal allowable value for B0 in calculating/^. In the event
that B0=0, B0 is automatically set equal to 1.

173

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

The fitness function for % is given hy f5 = ((dmax - dave)/dmax)n, where
dmax = V2 * batüe_size (see General Battle Parameters in Contents of ISAAC
Data Input File) and dave is the average red center-of-mass distance to the
blue flag:

1 T

«ave = "^ JL
*=1L

*blue-flag _ *red, CM^) J + (^blue-flag ~ J'red, CM^) J

where T is the termination time for the run (which can vary depending
on the selected termination condition; see termination_code in Contents
of ISAAC_GA's Input Data File). Notice that if the red force is close to the
blue flag at all times (so that dave ~ 0), then^ ~ 1. Conversely, if the red
ISAACAs spend most of their time far from the blue goal (so that dave ~

O.then/j-O.

Mission primitive m6

The sixth mission primitive consists of maximizing the average blue
center-of-mass distance to the red flag.

The pertinent parameter for m6 is d = "distance between the
center-of-mass of the blue force and the position of the red flag at time
t." The xUu^CM and yblmCM coordinates of the blue center-of-mass are
defined by

1 Bl 1 Bt

blue,CM() = J D *blue,i(0 and ^blue.CM^) = ^ X ?blue,t(0 >

where xUlKi(t) and yUuei(t) are the x and y positions of the i* blue
ISAACA at time t, respectively, and 2?t is the number of blue ISAACAs at
time t.

The fitness function for m6is given by/fi= (dave/dmax)
n, where dmax = -J2 *

battle_size (see General Battle Parameters in Contents of ISAAC Data Input
File) and dave is the average blue center-of-mass distance to the red flag:

1 T

«ave = "^ Zu *red-flag _ *blue,CM(*) J + (^red-flag ~ J'blue.CMCO J

where T is the termination time for the run (which can vary depending
on the selected termination condition; see termination_code in Contents
of ISAACjGA's Input Data File). Notice that if the blue force is close to
the red flag at all times (so that dave ~ 0), then f6 ~ 0. Conversely, if the
blue ISAACAs are forced, by red, to spend most of their time far from
the red goal (so that dave ~ dmax), then/, ~ 1.

174

irreducible 5emi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Mission primitive m7

The seventh mission primitive consists of maximizing the number of
red ISAACAs within an SC-defined distance of the blue flag.

The pertinent parameter for m7 is Rt(D)= "number of red ISAACAs
within a distance D of the blue flag at time t," where D is a user-specified
parameter (see flag_containment_range in Contents of ISAAC_GA's Input
Data File). Note that no distinction is made between alive or injured
ISAACAs. The minimal possible value of R^D) is equal to zero, while
the maximum possible value, R^, clearly depends on D and is
internally calculated by the program.

The fitness function for m7 (=f7) is given by a time average of
(R^D)/!*^)", averaged between tmin (corresponding to the earliest
possible time that a red ISAAGA could move to within a distance D of
the blue flag) and tmax = T is the termination time for the run (which
can vary depending on the selected termination condition; see
termination_code in Contents ofISAAC_GA 's Input Data File):

J'7 = TT~ Z, l-p— J fcmin ^_ J V -".max frmin /__ *
mm

Notice that if red is completely unable to penetrate blue's territory for
the duration of the run, so that R^D) = 0 for times t, then f7 = 0.
Conversely, if red is able to maintain a constant presence within a
distance D of blue's flag (which is likely only in the event that there are
few or no blue forces defending the flag), then their mission fitness for
this primitive approaches the value one.

Mission primitive ms

The eighth mission primitive consists of minimizing the number of blue
ISAACAs within an SC-defined distance of the red flag.

The pertinent parameter for ms is Bt(D)= "number of blue ISAACAs
within a distance D of the red flag at time t," where D is a user-specified
parameter (see flag_containment_range in Contents of ISAAC_GA's Input
Data File). Note that no distinction is made between alive or injured
ISAACAs. The minimal possible value of Bt(D) is equal to zero, while
the maximum possible value, Bmax, clearly depends on D and is
internally calculated by the program.

The fitness function for m8 (=f8) is given by a time average of (1 -
Bt(D)/Bmax)

n, averaged between tmin (corresponding to the earliest
possible time that a blue ISAAGA could move to within a distance D of
the red flag) and tmax = T is the termination time for the run (which can
vary depending on the selected termination condition; see
termination_code in Contents oflSAACjG-A 's Input Data File):

175

Irreducible Semi-Autonomous Adaptive fiombat (ISAAC): An Artificial-Life Approach to Land Warfare

T BAD)
f*'' ~ T-t ■ " [" ß * '•min t— t . \ "" l~" lmin

Notice that if blue is completely unable to penetrate red's territory for
the duration of the run, so that Bt(D) = 0 for times t, then red may be
said to have "succeeded in keeping blue away from its own flag" and/7 =
1. Conversely, if blue is able to maintain a constant presence within a
distance D of red's flag (which is likely only in the event that there are
few or no red forces available to defend the flag), Bt(D) ~ Bmax and red's
mission fitness for this primitive approaches zero.

Mission primitive m9

The ninth mission primitive consists of minimizing the total number of
red fratricide hits. This primitive is viable only if the red_frat_flag
software "flag" is set equal to "1" in the GA_DATA.dat input data file, so
that the red fratricide option during an ISAAC run is enabled (see
below). Recall, also, that a fratricide "hit" is just that, a hit, and not
necessarily a "kill." See Fratricide in ISAACA Combat.

The pertinent parameter for m9 is Fred = "total number of red fratricide
hits during the run." (Fred is accumulated over the termination time T
for the run, which can vary depending on the selected termination
condition; see termination_code in Contents of ISAAC_GA's Input Data
File). The minimal possible value of Fred is obviously zero, while the
maximum possible value is arbitrarily clamped at Fredmax = RQ, or the
total number of red ISAACAs at time t = 0. If the actual value Fred

exceeds Fred max, Fred is internally redefined to equal Fred max.

The fitness function for m9 is given by f9 = (1 - Fred / RQ)", Notice that if
red suffers no fratricide hits at all, so that Fred = 0, then f9 = 1.
Conversely, if red ISAACAs are hit by friendly forces at least RQ times,
then red's overall mission fitness for this primitive is zero.

Mission primitive m 10

The tenth mission primitive consists of maximizing the total number of
blue fratricide hits. This primitive is viable only if the blue_frat_flag
software "flag" is set equal to "1" in the GA_DATA.dat input data file, so
that the blue fratricide option during an ISAAC run is enabled (see
below). Recall, also, that a fratricide "hit" is just that, a hit, and not
necessarily a "kill." See Fratricide in ISAACA Combat.

The pertinent parameter for m10 is FbIue = "total number of blue
fratricide hits during the run." (Fblue is accumulated over the
termination time T for the run, which can vary depending on the
selected termination condition; see termination_code in Contents of
ISAACjG-A's Input Data File). The minimal possible value of Fblue is
obviously zero, while the maximum possible value is arbitrarily clamped

176

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

at Fblue max = B0, or the total number of blue ISAACAs at time t = 0. If the
actual value Fblue exceeds Fbluemax, Fblue is internally redefined to equal
F

blue.max'

The fitness function for m10 is given by/i0 = (1 - Fblue / B0)
n, Notice that

if red suffers no fratricide hits at all, so that Fblue = 0, then f10 = 1.
Conversely, if red ISAACAs are hit by friendly forces at least B0 times,
then red's overall mission fitness for this primitive is zero.

ISAAC_GA's GA Recipe

ISAAC_GA couples a slightly older version of ISAAC'S Core Engine with a
basic GA algorithm adapted from [27] (see appendix D). In
pseudo-code, the main components of this recipe appear as follows:

read GA_DATA and GAJSAAC files
for generations,gmax

for personality=1,pmax25

decode chromosome
for initial_condition=1,icmax

run ISAAC'S Core Engine
calculate_fitness(initial_condition)

next initial_condition
calculate_mission_fitness()

next personality
find_the_best_personality()
select_survivors_from_population()
perform_single_point_crossover()
perform_mutation()
update_progress_report()

next generation
write best personality to file and close all data files

In words, ISAAC_GA first reads in two data files: GA_DATA.dat (that
contains all variables pertaining to the GA) and GA_ISAAC.dat (that is
a truncated form - appropriate for this slighüy older version of the
Core Engine - of the data input file described in Contents of ISAAC'S
Data Input File). The contents of both files will be described below.

Next, the program uses a randomized pool of chromosomes to define
the 1st generation of red personalities. For each such red personality,
and for each of icmax initial spatial configurations of red and blue
forces (remember that the blue personalities are fixed in
GA_ISAAC.dat), the program then runs ISAAC'S core engine to
determine the mission fitness. After going through both loops, the
program sorts the personalities according to their mission fitness values,

25 Note that the total number of red personalities - i.e. population size - is defined
by the variable POPSIZE, found in the header file GA.h; see appendix B and Concise
User's Guide to ISAAC_GA).

Ill

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

and selects some to be eliminated from the pool and others to breed. It
then performs the basic GA functions of crossover and mutation (see
Appendix B). Finally, having defined a new generation of red
personalities, the whole process is continued until either the user
interactively interrupts the evolution or the maximum allotted
generation number has been reached.

Concise User's Guide to ISAAC_GA

As mentioned above, ISAAC_GA essentially provides a genetic
algorithm "front-end" to a slightly older version ISAAC'S Core Engine
than the one described in the Overview of ISAAC section. Specifically,
the version of ISAAC that is embedded within ISAAC_GA allows only
one squad per side and excludes all command and control structures.
This minor deficiency will be remedied in future versions.

Figure 69. ISAAC_GA's opening screen

ISAAC
Irreducible Semi-Autonomous

Adaptive Combat
(Genetic Algorithm'Evolver')

Version
7 April 1

Andy Had
Center for Naval

1.5.1
997

linski
Anal> 'ses

4401 Ford /
Alexandria V

Wenu
A 223

e
Q2

ilächiha(S)c nauofi 3 ■'■

Pr«i^ <:FNTFR>

■i ■■.-;■:

Starting ISAAC_GA

Assuming that the ISAAC "package" has been installed according to the
instructions given in the previous section Installing ISAAC, the genetic
algorithm evolver can be run by going to the appropriate subdirectory
on the hard drive (say, C:/ISAAC>) and typing the command
ISAAC_GA followed by <ENTER> on the DOS command line. You will

178

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

see the opening screen (figure 69), specifying the current version and
build date of the program and a prompt to press <ENTER> to continue.

The next screen prompts for a series of five file names (see figure 70):
(1) GA_ISAAC.dat, which is the default name of the file that contains a
truncated version of ISAAC'S input data file (see Contents of ISAAC'S
Input Data File in A Concise User's Guide to ISAAC); (2) GAJDATAdat,
which is the default name of the file that contain GA-specific data
entries needed to start the run (its contents are described in the next
section); (3) GA_STAT.dat, which is the file the user wishes to contain
the statistical summary of the impending run (see Contents of
ISAAC_GA's Statistics Output File: GA_STAT below); (4) GA_BEST.dat,
which is the file the user wishes to contain a running record of all the
"best" personalities as they are evolved by the program (see
best_personalities_to_flle? in Contents of ISAACjGA's Data Input File:
GAJDATA below); and (5) ISAAC.dat, which is a standard ISAAC data
input file that the user wishes the program to write the best overall
personality to (along with other fixed parameter entries from
GA_ISAAC.dat) so that it can be run interactively using the Core Engine.
Note that to run this file, the single-squad version of ISAAC must be
used (see ISAACJSQ in table 4).

Figure 70. ISAAC_GA's file name prompt screen

SPECIFY INPUT FILES

ISAAC input (GA_ISAAC.dat): ?
GA input (GA_DATA.dat): ?

SPECIFY OUTPUT FILES

GA summary output (GA_STAT.dat): ?

GA 'best' output (GA_BEST.dat): ?
Output ISAAC.dat file (ISAAC.dat): ?

Contents of ISAAC_GA's Data Input File: GA_DATA

GA_DATA.dat contains a user-modifiable listing of various GA-specific
variables that are used to control the execution of the GA front-end to
ISAAC. It consists of four separate sections (see figure 71):

179

irreducible 5femi-Autonomous Adaptive Combat (ISAAC): An ArtificialrLife Approach to Land Warfare

• GA Parameters, which includes parameters specifying the
maximum number of generations that the user desires to run,
the number of red and blue initial spatial configurations to
average over, software "flags" that toggle the use of specific
ranges of genes in the personality chromosome, and so on.

• GA Penalty Weights, which includes parameters that assign
relative weight values to each of the ten mission "primitives"
defined above (see Mission Objective).

• Termination parameters, which includes parameters specifying
the exact conditions under which a given run will terminate.

• ISAACA chromosome, which includes parameters specifying the
values of each of the 45 genes that make up a full chromosome

defining a red personality

Short descriptions of each of the variables appearing in GA_DATA,dat
are given below. These can be used as a reference guide for selectively
altering this file's contents to tailor specific evolutions.

num_generario:ns

This is the total number of generations that the user wants to run. A
single generation consists of running ISAAC'S core engine for each
initial condition (see num_initial_conds) and each personality (where
the total number of red personalities - i.e., population size - is defined
by the variable POPSIZE, found in the header file GAJh; see Appendix
B).

num_initial_conds

This is the total number of randomized initial spatial configurations of
red and blue ISAACAs that will be averaged over in calculating a
mission fitness for a given personality. The typical number of initial
conditions used in the sample runs below are between 15-50.

max_time_to_goal

This variable sets a limit on the maximum number of iteration steps
allowable per each run of the evolution. Depending on the termination
condition (see termination_code?), a given run may end prior to the
time specified in max_time_to_goal. Typical values for battiefield sizes
of ~ 80-by-80 are between 100-150 iteration steps.

penalty_power

This variable refers to the power n used in defining the fitness function,
/ for each of the ten mission primitives (see figure 68 in Mission
Objective). The value of penalty_power effectively determines how

180

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

rapidly/ falls off from its maximal to minimal value (n=l yields a linear
fall-off, 7i=2 yields a quadratic fall-off, and so on).

best_personalities_to_file?

This software flag determines whether the program will automatically
keep track of the best current personality (i.e., chromosome) during
the evolution. If best_personalities_to_file? = 1, a user-specified file will
contain a running tally of the best chromosomes for the entire run. In
particular, whenever, after the first generation, the program finds a
personality whose mission fitness exceeds that of the previously
recorded personality it appends the appropriate data file with the better
chromosome. Since the computational cost needed to perform this
function is minimal, the user is encouraged to keep it always set equal to
1. If best_personalities_to_file? = 0, no updates of best personalities is
made.

min_dist_genes_flag

This software flag controls the use of genes g36 through g42, that define
red's minimal distance constraints (see ISAACA Adaptability). If
min_dist_genes_flag = 1 these genes will be used in defining the red
personalities, else they will not. Keep in mind that even if
min_dist_genes_flag = 1, the program may itself determine that it would
be "better" not to use any minimal distance constraints by finding an
appropriate value of g36 = min_dist_flag.

initial_condition_genes_flag

This software flag controls the use of genes g43 through g45, that define
the size and x,y coordinates of red's initial spatial configuration. If
initial_condition_genes_flag = 1 these genes will be used in defining
red's initial condition, else they will not.

wl_time_to_goal

This variable defines the relative weight afforded to the 1st mission
primitive (see Mission Objective), that consists of minimizing the time to
goal.

w2_friendly_loss

This variable defines the relative weight afforded to the 2nd mission
primitive (see Mission Objective), that consists of minimizing the total
number of red casualties.

w3_enemy_loss

This variable defines the relative weight afforded to the 3rd mission
primitive (see Mission Objective), that consists of maximizing the total
number of blue casualties.

181

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

w4_red_toJbluejsurvival_ratio

This variable defines the relative weight afforded to the 4th mission
primitive (see Mission Objective), that consists of maximizing the ratio
between red and blue casualties.

w5_friendly_CM_to_enemy_flag

This variable defines the relative weight afforded to the 5th mission
primitive (see Mission Objective), that consists of minimizing the cumulative
distance between the center-of-mass of the red ISAACAs and the blue flag.

w6_enemy_CM_to_friendly_flag

This variable defines the relative weight afforded to the 6th mission
primitive (see Mission Objective), that consists of maximizing the
cumulative distance between the center-of-mass of the blue ISAACAs and the red

flag-

w7_friendly_near_enemy_flag

This variable defines the relative weight afforded to the 7th mission
primitive (see Mission Objective), that consists of maximizing the total
number of red ISAACAs that are within a user-defined distance D (see
flag_containment_range) of the blue flag.

w8_enemy_near_friendly_flag

This variable defines the relative weight afforded to the 8th mission
primitive (see Mission Objective), that consists of minimizing the total
number of blue ISAACAs that are within a user-defined distance D (see
flag_containment_range) of the red flag.

w9_red_fratricide_hits

This variable defines the relative weight afforded to the 9th mission
primitive (see Mission Objective), that consists of minimizing the total
number of red fratricide hits.

wl 0_blue_fratricide_hits

This variable defines the relative weight afforded to the 10th mission
primitive (see Mission Objective), that consists of maximizing the total
number of blue fratricide hits.

termination_code?

This software flag controls how a run (for a given personality) will
terminate. It can be assigned one of four integer values: 1, 2, 3 or 4. If
termination_code? = 1, a run will terminate when the first red ISAACA
reaches the blue flag. If termination_code? = 2, a run will terminate
when the number of red ISAACAs within a range R =

182

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

flag_containment_range (see below) exceeds the threshold N =
containment_number (see below). If termination_code? = 3, a run will
terminate when the position of the red force's center-of-mass is closer to
the blue flag than a threshold distance (defined by
red_CM_to_BF_frac; see below). If termination_code? = 4, a run will
terminate when the number of iterations t = niax_time_to_goal (see
above).

flag_containment_range

This variable sets a range around either the red or blue flags
(depending on the values of other variables) which is used to count the
number of ISAAGAs near a flag. For example, if the relative weight for
maximizing the number of red ISAACAs near the blue flag is nonzero
(i.e., if the value of the variable w7jFriendly_near_enemy_flag > 0), the
value of flag_containment_range sets the pertinent range from the blue
flag.

containment_number

If the termination flag is set for terminating a run when the number of
red ISAACAs within a range R (= flag_containment_range) exceeds a
certain threshold N - i.e., if termination_code? = 2; see above - N is
specified by the variable containment_number.

red_CM_to_BF_frac

If the termination flag is set for terminating a run when the position of
the red force's center-of-mass is closer to the blue flag than a threshold
distance D - i.e., if termination_code? = 3; see above - D is specified by
the variable red_CM_to_BF_frac.

ISAACA Chromosome Entries: gene[i]

The remaining entries - gene[l] through gene[45] - define not the
values of the individual genes of a red personality chromosome but the
minimum and maximum values that those genes are actually allowed to
take in the program. For example, the first entry,

gene[1]:S_range 1,10

means that the first gene, corresponding to red's sensor range, can only
take on values between 1 and 10. Note that the minimum and
maximum entries for genes that correspond to the signs (+ or -) of other
variables (such as gene[5]:wl_alive_sign) are 0 and 1, respectively.
Either of these values can actually be set equal to any real value between
0 and 1. The sign is determined internally by generating a random
number between 0 and 1, comparing this number to the gene "value"
(also between 0 and 1 if the file shown in figure 71 is used), and

183

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

choosing the "+" sign if the random number > gene value, else choosing
the "-" sign. A greater or lesser likelihood of choosing "+" versus "-" can
therefore be regulated by selecting appropriate minimum and
maximum entries for a given sign gene.

184

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 71. Sample ISAAC_GA data input file

IV*:;::::
;: v:;GÄ::: parameters :;

i nuricgehe rati pns ::.'..' ■ :>250 > "
K;:numji:riitial^cpnds : ':.'.'. :50;; j
!;'■ ma^time^tp^goal: : ; 125': :
«penal ty^pbwer: :UZ \} ■■;.-
I vbestSpexsönäTi ti fefctojifÖ e? ':. :' 1 ;:
::; tn1ri_d1 st;genesjflagV:j;;? : ■ ;0;; vi
::;1nitial^cbnalt1on^genes_^;1ag :8:::; ::I:

:'■■>:;■ :;Vi;J: penalty;wetghts (1-100) :: ■

:: waatifte^oigpaV::'7.:.,.;.. :<.;:■ .:,-;■:■; -0 -'
i;v^f riendly^Tpss : { : 10:"
::w^eiiemyilpss;: ' :

:. 'flV^v'S'
w4_red_tozlJlue^«rvlval^ratlo 0
w5_friend1y_CM_to_enemy_flag 10

iiWfcenemy^Clfctp^friend1y_f 1 ag ; ;:;:0;:.:;:
:::w7ifrieiidTyinea:r^eriemy^flag K; '; :<l--':
r w^neiiVirtSar^frlendTy^fTag ;:-::; 0: :
fWSlred^ratrJcidelhlts :: '•'■:; -ig;. '■; ■■;.

wl0^bTue2:fritricidevtiit s';■;.:. :::::0;: v ::

p:;*';:''':.k;K::x|e#

jj terml nati pnicpdefj.; :; ;:4 ■; xK <
l fTag^cpntaiiiinent^ränge;:;:: v:;:;:ji5&l:
? contal nroeritahuntber: a ! SiB ?;•
? red_Äip;iBFifrac :':V::;::s,: ■;;;■;;;;iiis :■

:? :*; S ■: ■ ;::; VISAACA; chrpmpspme': iW;i

:;geneCig:Sjrange ■''■ > ■■::;■;::i, 10 ::!
:i:::gene[23;:F_range:: :;: ::: 1,10 :
::;:gehe|;33:C_räftge::::;:i: :> % i;:10:i;
: .gene C4i:wli3Tlve;:::;::;:: ::0;:100;
;. gene [5]: wli^ali veisl gri :! ; ;0 ;i:'::
j;;:j|ehetBj5W^Tiyfi"^::v.:

:-.' fl^iaa
:SgeheC7j:wZ^aT1ye-sign: ■;:;:: ■ ■ :0;1: ,

genet8];:w3_aTive 0,100
gene[93:w3_alive_s1gn 0,1
gene[10]:w4^.alive 0,100
gene[ll]:W4_aTive_sign 0,1

:"'seneCi23::-W5i»11ve 0,100
: genetl3]:w5^a1ive_sign 0,1

geneH4]:w6_aTi»e 0,100
I generi5]:wB_ali»e_sign 0,1
I geneti6):wl_injured 0,100
I geneC173:wl_injured_sign 0,1

genetlS]:w2_1njured : 0,100
: geneCl93-w2_1njured_sign 0,1

geneC20]:w3_in3ured 0,100
geneC21J:W3.;-in;jured_s-fgn 0,1
gene[22]::w4_injured 0,100

: gene[233:w4^injuredisign 0,1
g"ene[243:w5_injured 0,100

i geneC25]:w5_1njured_stgn .0,1
geneC263:w6^i.njured 0,100
gene[27]:wS_rn3ured_sign 0,1
geneC28X:A0V_alive 0,20

: genef29]:CLS_alive 0,50
gene[303:C0T_alive : 0,50

: geneC31]:CBT_alive_sign 0,1
I gene[321:ADV_injured 0,20
: gene[33]:CLS_injured 0,50
I gene[343:CBT_1n;jured . 0,50

gene[353:CBT_injured_sign 0,1
; geneC363:niin_d1st_flag 0,1
: geneC373:R_R_m1n_dist^a1ive 0,10
■ gene[383:R^B_;iiiin_dist^alive 0,10
: geneC393:R_R_gpal_m1n_alive 0,40
I gene[403:R_R_min_dist_injured 0,10
: geneC413:R_B^min_dist_injured 0,10

gene[423:R_R_gpal_min_1.njured 0,40
genet433:initial_box_size 1,50 ■
gene[443:1n1t1al_box_center_)t 1,30
gene[453:initial_bpx_center_y 1,30

185

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Contents of ISAAC_GA's Data Output Files

As mentioned earlier, ISAAC_GA generates three output files:

• ISAAC.dat, containing a truncated version of ISAAC'S input data
file that can be read-in and run as-is by the single-squad version
of ISAAC, ISAACJSQ

• GA_BEST.dat, containing a running record of all chromosomes
(and corresponding mission fitnesses) of the "best" personalities
that were found during the evolution

• GA_STAT.dat, containing a statistical summary of the complete
run (see below)

GA_STAT.dat

An annotated sample of the data fields appearing in GA_STAT.dat is
shown in figure 72.

The file opens with the start date, start time and a listing of the mission
"weights" that will be used during the run to calculate the mission
fitness. There is also a reminder of the termination condition that the
user has selected for this run (see discussion under termination_code in
Contents oflSAACjGA's Data Input File: GA_DATA). This is all written to
GA_STAT.dat prior to starting the actual run. Once the run begins, and
at the conclusion of each generation (see pseudo-code in ISAAC_GA's
GA Recipe above), the program continually updates this file with a
summary of how well the evolution is proceeding. This summary
consists of the generation number last completed, best and worst
mission fitnesses found thus far (including all previous generations),
best and worst mission fitnesses found during the immediately
preceding generation, and the average fitness of the current population
(+/- standard deviation).

Once the run is completed (whether automatically, by completing a full
sweep through all user-requested generations or interactively, by a user
by pressing the 'Q' (for Quit) key), the program records the parameter
values defining the best overall red personality that was found during
the run, along with its mission fitness value. The file concludes with a
record of time, date and total elapsed time for the run.

186

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 72. Sample contents of the output file GA_STAT.dat

: start date: 04/11/97
: start it 1 meY :15 :52':25:

; ■ Fi tnes 5: Paramete rs::.:

tfme;:tp:goäT:; ;/■; ; iv,;
red loss:,
blue loss:
;red:CM:to:bTue :flag:;i

xblite;:CM: to
: :red ;:f 1 ag i:

;:red nea r■'■: bl tie ;flag::';/:
iblue: nea r -red 'flag id
ired ; fr:atricide:;:■:;

;: blue:: fratricide: ::

} Start Time/Data

0.a0
0.00
0i00
:0*00;
mit:
i:v00
0:00
;0-00;:
0:00:

Mission Fitness "Weights' i"

; termination condition: t_max=100 ;

; generation best
: number

.1
2
t:

;::4'::
:;"S':'

6
■::7!V

::i0,i

. ; vätüe;? Ssvälue/i B
(overäIT) :{dveral1: j'1

y-Mtzz.: :Smim::'3 ;y\:mm me^em^
::: mess^^mewd
~mms: >;:mm&.M

i:;:::;:0;065'::i:':.?:0i008::SS
:?:0:.065' M ISMS
i:?0:083 :»!::0.000
:s::;0vi27 ;:;:::::.0.000:: :
;Ä 0:127.;;: *K 0.000 ;:;.;:■;

:.Wbrst ; beste;: K : worst .average ■_■■■. ■ ;äye;:-H- staridard:i lave .-^standard:: ■■: standard
value:
(gen)
0,026
0,048
:0.055:
0.058 :
0.065
:0;052
0:083
;0.127
E0:i05;:

: vaiue
: :(gert)::
: .0:000
:-:0i000 :
:::::0;000 :;
S0.000 ;

:;:;0v000::
::;0.000
K0.000
::: 0.000 :

fitness :
:(gen)

: 0:01s
2.031
.0.035:

: :0:J028
::::0:i037:

: 0.036.
:: 0.043:

0.041:::
: 0.051

: 0ii27 : : 0^000 0.110 0.000 0.063:

: d6viatiOn;:

: 0:027':
:0:045:
0:051::
0:042

: 0.050
: 0.052
40*063;:
::0i059::

:0:078:
0.095:.

; deviation

:::0:009; ■-.;.:
: .: 0.017.
::::0v0i8 : ::

::0:013 :>
:0:024 :::
0.020 J

:, 0:022 ::
: 0.024: :

:: ''M^BZi':^
::0:032

: deviation

Simulation completed

: "Bestf pe rsona 1 ity:: "W:;:

S-range
F-range

:; C-^rarige:
l-vitiila ':;';>.
: :w2ia ;■' ;•;
;.w3_.a;;;:;:;::

::.w4Sa': ;...;■;
:W5va:;.:;::

::;v*Ö;:::;::::;
w2_i

:*3ii .:;;':;:
w4_i
w5_i
w6_i

-ADV^a:.::
::::CLS_j ™?i

CBTia :
ÄDvii::!
CLS_i
CBTii :
R_R;a ?::
R_BL>; •:.:
R_RG_a
R_R_i
R_B_i
R_RG_i

:=ia:;:----
:=:::4 ::::■:::
:= 9
:=;:20;900;:::
:=:-8:300:::::
;= 7.000 :.::
:= -23.500 :
=: -42.300 :
=21.600
~ -9.700
= 67.000
= 41:400:
:= -50:600;

= -68.300
=54.000
= 7 :
= :49:: : : :
= 30
=;:.iz?".:,:::v'.;

= 23
-¥48;::;::':':''-::;: :=:0i:00; :::
=:0:00
= 0.00 ':-i
= 0i00: :::
= 0:00::
= 0.00

summary of best,worst and average
mission fitness for each generation

0.009.::: .-:■;::
0.014 ::
0:016::

:0:015 : :::
:0i013::
0.016:::::

0; 017: ■;:;■"
0.027

Parameters defining the "best" overall personality

Best fitness=0.1934 :

start date: 04/12/97
start time: 22:00:36
elapsed time: 108491 seconds

Mission fitness of "best" personality

;■> >4-3--— End Time/Data and Elapsed time for run

187

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Graphics Display

Once the user has selected the name of all input and output data files
(see figure 70), ISAAC_GA runs through its initialization routine and
displays the main graphics page.

A sample graphics page is shown in figure 73. Note that this figure
assumes that the hot-keys 'B' (for Battle-Space), 'C (for Chromosome)
and 'F' (for Fitness) have all been pressed (see "Hot-Key" Menu below).
The display is broken up into six separate regions:

• A banner-display region, located at the top of the display and
containing a large bold font, which identifies the program and
release version, and the generation that is currently being
processed.

• A text-based fitness-summary region, located directly beneath the
banner-display region, which provides an up-to-date statistical
summary of the genetic evolution (see below).

• A battlefield region, located near the bottom center of the
display, which contains the battlefield view of what the current
red personality is actually doing.

• A fitness-parameters region, appearing to the left of the
batdefield, which contains a reminder of what mission fitness
measure is being used for this run (see Mission Objective).

• A personality region, appearing to the right of the battlefield,
which contains parameters defining the current and overall best
red ISAACA personality.

• A "hot-key" menu region, appearing at the bottom of the display,
which contains a short menu of "hot keys" that the user can use
to interrupt a run at any time to perform a variety of functions
(see below).

Fitness Summary

The fitness-summary region, located directiy beneath the
banner-display region (see figure 73), consists of three columns of
information that provides an up-to-date statistical summary of the
genetic evolution.

The first (or left-most) column contains, from top to bottom, the
number of the personality P (i.e., or chromosome) that the program is
currendy processing (expressed as a fraction of the total number of
personalities in the genetic pool, P/Pmta), followed by the current initial
condition C (expressed as a fraction of the total number of initial

188

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

conditions that the program will average the fitness value over, C/ Ctotal),
followed by the current time step t of the sample that is being run for
the C* initial condition for the P** personality (expressed as a fraction of
the maximal allotted time for this run, t/t^).

The second (or middle) column contains, from top to bottom, the
value of the fitness of the (n-l)st personality, where the nth personality is
the one currently being run (the value P/Ploai appearing at the top of
the left-most column), the fitness of the "best" personality of the
immediately preceding generation, and the fitness of the "worst"
personality of the immediately preceding generation.

The third (or right-most) column contains, from top to bottom, the
average fitness value of the preceding generation, the fitness of the
overall "best" personality that has been found thus far (up to and
including the immediately preceding generation), and the fitness of the
"worst" personality thus far (up to and including the immediately
preceding generation).

"Hot-Key" Menu

The colored words at the bottom of the battlefield comprise a short
menu of (black-colored) "hot keys" that the user can use to interrupt a
run at any time to perform a specific function. There are five functions,
accessed by the following keys (and defined according to the order in
which they appear, left to right, on screen):

• "B" (for Battle-Space): toggles the graphics display of the
notional battlefield. Note that such a display is time-wise
somewhat costly (slowing down apparent computation speed
about 40%). Because speed is of the essence in genetic algorithm
evolutions (see below), this option should be used sparingly to
obtain glimpses of how a particular personality is doing.

• "C" (for Chromosome): toggles the display of the parameter
values defining the current and best personality on the
right-hand-side of the display.

. • "F" (for Fitness): toggles the display of the mission objectives
defining fitness for this run, along with a reminder of how each
sample during this run is to be terminated.

• "Q" (for Quit): closes all output data files (saving intermediate
results) and quits the program.

• "S" (for Store Current Personality): stores the parameters
defining the red personality that is currently being processed to a
data file that can then be read-in and run as-is by the single-squad
version of ISAAC'S core engine (i.e., ISAAC_SQ). In practice,

189

irreducible Semi-Autonomous Adaptive £bmbat (ISAAC): An Artificial-Life Approach to Land Warfare

one "sees" an interesting behavior taking place on the notional
battlefield (having accessed the graphical display of the
battlefield by first pressing the "B" hot-key; see above) and then
presses the "S" hot-key to record the personality that is
responsible for that behavior.

190

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

V 0) s
in tp s

CM m »H

S CD S

II II II

09 09
09 S*

pa o

,. ^D ^D 03 S3 CD ^D 03 CD 03 03 03 03
MH to en co CM CD m CM T-I to co in co
_a t« l""> ^ ^ ■ • • ■ ■ ^s /»* *"»i /"s « «

z S LDLnr<-fniHCDfHc>jrHi+fni-ii-iiH CM rr
o + + +I++I++ I |
M wwwwwwwwwwwwwwwwwwwww
K
W

Z CntOGOCDGDSGDGDCDODCBGDCDCDSrni-lCDCQiHCO
« w co v en CD r-to r^ en r-v tr« CM i-i m m »H ro IH

<X OS tocncMr-CMi-ir-toi-iuip-to
II II « HPl* + NNCnf f M^

i + i + + + + + i + i
0) 0)
09 0)

10 10

■

.2 ii
to T

>

(0

(0
o

Q.
(0
I—
O)
c

'co
E
to

<

o
<
cc
LU
z
111
o

0)
l_l
0)

r» co en
CM P- CD
m CD v
i-l CM i-J

CD CD CD

II II II

O) CM CM
CM

0) Q) 0)
ft O) 89

I_I I—I I—I
09 -P +>
09 09 (0
09 09 U
S fiQ O

t/9

01
09 II
S
« e,
t- I

I I iH
ft: U 3

II II II II II II II

id, iö, 45. *d,
i i

CM m
3 3

—.-._! I

II II II II II II

10 10 10 ■"* ■«* ■•<
I I I

I I I I II I I 1=> t/9 H- => CO H
«intOHNnvmtoeNinaijga
333333333CCUUSUU

^D ^D ^D ^D ^D ^D ^D 03 CB 03
<^D ^D CD CD ^D ^D 03 ^D ^D <^D

CO CO CD
CD

I
O

CO

CO

=3

ii

\ \ \
CD CM CM
m

II II n
39T) 09

+> s e
— Ü Hi
10

o —
09 C
SH I-

0)
ft!

CDCDCD^CDGDCDCDODCD
CD v> CB * ■H w ■■ 11 ||

H in ft N ■i Y
K is « tn » 10 r H H « i« r
a 04 <h H H ■■
K ■i <ta «4 ii t> +)
a 0 0) ■0 09 >0
PH ■i • H s 99 0) "0 ■0 >PH

H ■w H fa 3 9) •rt Ü ■■

v> * It A H & U ■H q
Vs e fa O A i« fa n
H ft ■i 14 o *J fa fa V •>M

Z «9 14 0) +* Si « *J « ^J
H O M e s £ « 1) * fa 10
t-i ■W O H H C O 09 e fa «M e
tu H pa u e «K ■rt

0) 1) \ 09 0) 1) e
4 E ■0 s Tl •8 s ■s 0 -0 s Li
T i*4 09 H 0) 0 H 0) H 0) H 09 * H K a K PC n « n K CQ +»

>

H
IS
C
o
«
fa
09

PH

u
c
V
fa
fa

01
fa
0

■p
Vt
II
A
(A
V

s
e
II

o
V

0
w

c
■p

II

fa
V

0)
E
0
w
0
E
O
fa
Ü
II
A
(J
V

0)
Ü
I«

tfl
I
09
H
4J
+s
US

pq
II
A
H
v

191

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Runs

In this section we present a few illustrative sample runs using the
genetic algorithm front-end to ISAAC'S core engine.

Typical Run-Times

In order to give the reader an idea of how much processing time a GA
run requires (so that the values of pertinent variables can be adjusted
according to available hardware - and patience!), consider a "typical"
scenario in which 50 red and 50 blue ISAACAs engage in notional
battle on an 80-by-80 battlefield. If the genetic "pool" is populated with
50 personalities and the program is asked to average over 25 initial
conditions, typical run times on a 166 MHz Pentium computer average
about 5 - 6 hrsfor 50 generations. Keep in mind, also, that these values
represent fairly small scenarios, and are used here for illustrative
purposes only. Research caliber runs require 100 or more personalities,
50 - 100 initial conditions to average over and larger force sizes (~100
or more per side). Such scenarios currently take well over 24 hrs to run
(or to reach a satisfactory "saturation" level; see below) on a
Pentium-class computer. A major programming focus for future
versions of the genetic algorithm evolver will be to improve the
required run times.

Typical Learning Curves

Figure 74 shows a typical learning curve for scenarios such as the one
outlined above. Recall that mission fitness is a number between zero
and one; numbers close to zero representing "low fitness" (according to
the specific mission objective selected for a given run), and numbers
close to one representing "high fitness." The bars in figure 74 represent
the lower and upper bounds of mission fitness for a given generation, as
defined by the absolute deviation from the fitness average.

Figure 74. Typical GA learning curve

to

2 -2

20 30

Generation
40 50

192

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

While learning curves will, of course, be different for different runs,
some basic features are common to most curves. For example, because
all runs begin with a random population of personalities, the initial
gene pool tends to be relatively poor at performing whatever mission
has been specified for a given run. The mission fitness at t = 1 will
therefore be typically low. As the GA sorts the personalities according to
their fitness values, and evolves this pool, the mission fitness will
generally rise; fairly quickly at first, then eventually saturating at a value
that represents the effective fitness maximum for a given mission
objective. Since not all objectives are equally as amenable to a GA
"solution" - in fact, some may not be "solvable" at all given the
parameter space available to the GA - the value of the mission fitness at
which any given curve saturates may not be as close to the value one as
the user a-frriori desires. The learning curve shown in figure 74 saturates
near/~ .5 at t ~14, which is a fairly typical characteristic saturation time
for scenarios with 50 ISAACAs per side and a gene pool consisting of 50
personalities.

Figures 76 through 79 provide color "snapshots" of several sample GA
runs using ISAAC_GA. Table 11 also gives short descriptions. All of
these runs can be played back in their entirety by using the stand-alone
"play-back" program ISAAC_SQ (see table 4).

Table 11. ISAAC output files corresponding to the sample GA runs
shown in figures 76 through 79

Sample Figure ISAAC output file1 Brief Description
GARun

1 76 AWAY_l.out Red's mission: keep blue away as far from red flag
as possible for t=100 steps, "best personality"

AWAY_2.out Red's mission: same as in AWAY_l.out;
2nd "best personality"

AWAY_3-out Red's mission: same as in AWAY_l.out;
Blue is more aggressive; red uses different
"tactic"

AWAY_BAD.out Red's mission: same as in AWAY_l.out;
Early "bad" personality

2 77 GOAL_2.out Red's mission: get to blue flag and minimise red
casualties; all red survive but few red get to
blue flag (i.e., relatively low fitness)

77 GOAL_4.out Red's mission: same as in GOAL_2.out;
92% red survive and almost all red get to blue
flag (i.e., high fitness)

78 GOAL_6.out Red's mission: same as in GOAL_2.,out;
Red's tactic is to "weaken center then go around
blue defenses "

79 GOAL_l.out Red's mission: same as in GOAL_2.,out;
Red's tactic is to "spread and weaken, then surge

 through the thinned blue defenses "
Output files are provided on the accompanying disk.

193

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample GA Run #1

Figure 76 shows a few snapshots taken from a play-back of the files
AWAY_l.out, AWAY_2.out, AWAY_3.out and AWAY_BAD.out (using
ISAAC_SQ). The first three files represent the "best" GA-evolved red
personalities for performing the following mission: "Keep blue ISAACAs
as far away from the red flag as possible, for as long as possible (up to a
maximum 100 iteration steps)." This means that the mission fitness / will
be close to its maximal value one only if red is able to keep all blue
ISAACAs pinned near their own flag (at a point farthest from the red
flag) for the entire duration of the run, and / will be near its minimal
value zero if red allows blue ISAACAs to advance completely unhindered
toward the red flag. For comparison, the last file, AWAY_BAD.out,
contains an early "bad" red-personality that performs this particular
mission poorly. Combat unfolds on a 40-by-40 notional battlefield, with
35 ISAACAs per side. The GA is run using a "pool" of 50 red
personalities for 50 generations, and each personality is averaged over
25 initial spatial dispositions. Figure 75 shows a fragment of
ISAAC_GA's input data file for this run (see Contents oflSAACjGA's Data
Input File: GA_DATA).

Figure 75. Fragment of GA_DATA.dat input data file for Run #1

* ■ ' ■■

* GA parameters
:*■■

num_generations 50
num_initia'l_vConds 25
max_time_to>goa1 : 100

; penalty_;power 2
best^personalities_to_file? 1

::;niir)_jdist_gerie:s_flag 0:
initia1_condition_genes_flag 0

■■*

: * ;: :-:sp en a ity.:: weights (1-100) '.'V
:::!*;' •
:*************************************
i;:::wi£ti'meüt'oJigQa1-.:" I',-.!- 0 :

w2_/riend1y_loss 0
w3^enemy_loss 0
w4^red_to_blue_surviva1_ratio 0

:::w5^riendTy£GM^b^nömy_flag::: 0
: w5^eneiiiyl;eM^;o«f:r:iendTy_flag: :; 10 ■

w7_friendly_near_enemy_f1ag 0
w8_enemy_near_friendTy_flag 10
;w9_red_fratricide_hits 0
wl0_bTue_fratricide_hits 0

* ;

termination parameters
::*

■ termination_cbde? "< K4 : ;
::fl;ag£cöhtafnment£r;aTige''-^-:U:4^ : 12
containment_number 10

; red_CM_to_BF_frac ;5■-■■■...'■

194

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

The best red personality that the GA was able to find for this mission
appears in AWAY_l.out. The snapshots of this run (taken at times t=25,
50 and 100), show that red is very successful at keeping blue forces away
from its own flag. In fact, the closest that red permits blue ISAACAs
from approaching the red flag - during the entire allotted run time of
100 iteration steps - is some point roughly near midfield. In words, the
"tactic" here seems to be - from red's perspective - "fight all enemy
ISAACAs in sight while moving toward the enemy flag slowly enough to compel
the enemy to keep following." Note that this tactic is fairly robust, in the
sense that if the battle is initialized with a different spatial disposition of
red and blue forces (while keeping all personality parameters fixed),
red would perform this particular mission about as well.26

The second best red personality, AWAY_2.out (whose snapshots are taken
at times t=25, 50 and 90) shows a slightiy less successful, but innovative,
"tactic." Here, just as in AWAY_l.out, red ISAACAs initially move away
from their own goal to meet the advancing blue forces (see time = 25).
Once combat ensues, however, any red ISAACAs that find themselves
locally isolated "double back" toward the red flag to regroup with other
reds and thereby form an impromptu secondary defense against
possible blue leakers. Because a few blue ISAACAs manage to fight their
way near the red flag at later times (see snapshot for time = 90), the
overall tactic is not as successful as the one used in AWAY_l.out.

The snapshots for AWAY_3.out show the tactic used by the best red
personality found by the GA after the blue force is made a bit more
aggressive (by increasing blue's personality weight for moving toward red
- i.e., weight components wblue2 and wbIue4; see ISAACA Personalities -
by 50%). Red's new tactic is completely different, and in fact proves to
be even more successful (from a mission fitness point of view) than the
tactics used in the previous two examples. Here, red quickly "spreads
out" to cover as much territory as possible and "strikes" the enemy as
soon as the blue ISAACAs come within view. As their territorial
coverage is thinned either through attrition or movement toward the
blue flag, other red ISAACAs (namely, those previously positioned near
the periphery of the battlefield) move inward to fill any voids. This
tactic succeeds in not only preventing any blue ISAACAs from reaching
the red flag, but manages to push most of the surviving blue force back
toward its own flag! As the case with previous tactics, this tactic is also
fairly robust, and is not a strong function of the initial spatial
disposition of red and blue forces.

The last example in figure 76, AWAY_BAD.out, shows a few snapshots
from an early "bad" red personality. The mission and blue personality
are the same as in AWAY_3.out. Initially, red appears to behave as it
does in AWAY_3.out, as red ISAACAs quickly disperse outward to cover
a large area. But, because at this early junction in the "evolution," the

26 The reader can verify this fact by running AWAY_l.dat using ISAAC_SQ, and by
randomizing the initial conditions by pressing the "N" (i.e. raNdom) hot-key.

195

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

GA has not yet had the time to "fine tune" all of red's genes, red is in
this instance unable to prevent blue ISAACAs from penetrating deeply
into red territory.

Sample GA Run #2

Figures 77 through 79 show a few GA-evolved "tactics" for the following
mission: "Get to the blue flag as quickly as possible while minimizing red
casualties." Except for the values appearing in the penalty weights section
of ISAAC_GA.dat, the GA's input data file for this sample run is the
same as the one shown in figure 75. The penalty weights section must be
amended so that all weights are zero except for wl and wn:

w1_time_to_goal 10
w7_friendly_near_enemy_flag 10

As in the previous example, the GA is run using a "pool" of 50 red
personalities for 50 generations, and each personality is averaged over
25 initial spatial dispositions.

Figure 77 shows snapshots of the evolution of two early red "attack
tactics." Red's first tactic (stored in the play-back file GOAL_2.out) is to
station its forces out of reach of blue's fire power, and then - after
creating an "opening" on blue's right flank by slowly drawing out a few
enemy ISAACAs - to send a small section of reds toward and around
that opening. While, in the end, all reds survive, the overall mission has
not been a particularly successful one (from the mission fitness point of
view) because only a relatively few reds have actually made it to the blue
flag.

Red's second tactic (stored in the play-back file GOAL_4.out, and
illustrated by the sequence of snapshots appearing at the bottom of
figure 77) proves to be more successful. Here, red again first advances
toward blue's defensive position, maintaining a station at a far enough
range so as to avoid blue's fire power (see snapshot for time = 25).
Then, after a relatively long period of time during which there is much
"undulating" (or random "posturing") on both sides, red exploits a
perceived weakening in blue's forces (near the center region of blue's
defensive position) and quickly strikes, sending most of its force through
the blue defenses and toward the enemy flag. As blue ISAACAs
counterattack and surround the penetrating red ISAACAs, a second
squad of reds penetrates through a newly created "hole" in blue's
defense. The result, from red's point of view, is that 92% of the initial
force has successfully penetrated through to the blue flag.

Figure 78 shows snapshots of a third red tactic for this same mission.
The run can also be played back in its entirety by using ISAAC_SQ (i.e.,
the single-squad version of ISAAC; see table 4) to "play back" the file

196

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

GOAL_6.out. The tactic exploits (or sacrifices!) a few red ISAACAs at the
front of the advancing red force. The snapshots for times 15 and 20
show that as most of the force splits into two groups and moves off
toward blue's left and right flanks, a few red ISAACAs (those that are
originally near the center of the split) proceed to move forward and
penetrate blue's defense. By enticing blue to counterattack red's
penetration (by sending forces toward the middle), red effectively
dilutes blue's strength along the outer edges of its defensive station.
This, in turn, creates "openings" on both sides of blue's defense
through which the two separate groups into which red had earlier split
can now move virtually unopposed. The snapshot for time 90 shows that
red has successfully penetrated through to the blue flag well before the
maximum allotted time for this run has expired (tmax =100).

Snapshots of the fourth, and final, sample red tactic for this same
mission is shown in figure 79. This run can be viewed by using
ISAAC_SQ to "play back" the file GOAL_l.out. Red's tactic here is
again, as in the previous example, to exploit a few red ISAACAs at the
front of the advancing red force. This time, however, red does not need
to sacrifice these ISAACAs. Instead, red uses them to split apart blue's
forces in order to temporarily "weaken" the center region of blue's
defense. As soon as this center region is sufficiently weakened, red
quickly penetrates through to the blue flag. What is surprising is the
robustness of red's personality with respect to this tactic. Red is more
often than not able to successfully employ the same general tactic
against an arbitrary blue initial force disposition.

What is most surprising about many of these runs is that the red force
appears to task different ISAACAs with different missions, despite the fact that
each red ISAACA is endowed with exactly the same personality! Thus, in figure
79, the higher-level tactic "use the two forward positioned ISAACAs to
weaken the enemy's center" emerges out of the collective interactions of
the same low-level decision rules: an apparent centralized order
induced by decentralized local dynamics.

197

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 76. Snapshot views of GA-evolved personalities for scenario GA_1

-:"®- BLUE Flag

RED's "Mission" =
Keep BLUE as far from ...!^P^ RED flag as possible

RED Flag ► IK" .;:•

for t=100 steps

Initial State

• •- . =•
„ >.

3 == ■ . .
9 S „• " ■

1- o
1 £ » ■"■••■■ •5*1 "

> ,? :::::[:;:; "
< °- ■

£ 1 < <s
• • •

time = 25 time = 50 time = 100

• • •
.£•

*; as
3 C ■ • »
O o m m ■ . . ■ ■ •.

• CD

N| ® r":.. :. .-.:... " " *"::-"-.

< «0
•is:"-"""

-::::-::- "-"*
> <D
5 to \
< -o • •

e •
<v» • • • :

time = 25 time = 50 time = 90

<D
• ._ d& =«i: > " " *""S*S

U
t

es
si

al

ity

_ rr3

_
3

.o

A
gg

r
»r

so
n

\ ". " -».4|3 '■ .

5 gff
SO«

" # * -
■ ■. * ■

% 2 8 . _
< ID CO : ..• ■•• ■ . • . : .

3

CO *'-. - :
»■ " "

*■

time = 15 time = 50 time = 100

£> • in-" • . ' *

1 s ' • • . • , -. - ^
O O _

o S ■ ""'. '1 rr:~ •
< CL
CO . ■ ■; ! jf^- ■ " " ,%" . : • . ' '

1 -o '. ■ -~Z .." ■

5 F
. . , ...

: rJm

5 ^ • ' • : .' ":" *" . ■ - : :
< (5 £3:.

Ul • ■ . . ". * «-—"-:~

time =15 time = 40 time = 75

198

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An ArüfidalrLife Approach to Land Warfare

Figure 77. Snapshot views of GA-evolved personalities for scenario GA_2

RED Flag-

BLUEFlag

RED's "Mission" =
Get to BLUE's flag
and minimize RED

casualties

(0
H—

111

_i
CO

§ ?>£

< = 5
O | j

3
CO

Q
LU

Initial State

time = 10
•

=. \

'""■':.. .'' ":

•

time = 20 time = 30
:>:

-

•

time - 45 time = 60 time = 80

time = 50
•

•s;.y -""

•

time = 55

time = 60 time = 70 time = 90

199

Irreducible .^mi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 78. Snapshot views of GA-evolved personalities for scenario GA_2

RED Flag

BLUE Flag

REO's "Mission" »
Get to BLUE'S flag
and minimize RED

casualties

initial State

R---:-.'-'

time = 10

time = 25

time = 45

%.

time* 15

: •

"" V
V '&:

B»i:
":i'iB

. . ,».,=::«• ::.

•

time = 30

time = 60

time « 20

time - 35
■.::::■+ :;::::

.!•. . "
'%..

"Pi:.. .,

*•

time = 90

200

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificicd-Life Approach to Land Warfare

Figure 79. Snapshot views of GA-evolved personalities for scenario GA_2

BLUE Flag

RED Flag-

Initial State

.
%
3,.

ill!, """""avi.
'i'iSj?''

«

time = 35

1 -i.-
•

:i!fi ' ■

•

time = 50

V""!': •".

:.«

•T1/ Iji...
'■'.i

•

time = 70

41:.. .3**. i_.

time = 40
•

time = 55

t-i

'••'In- K

time = 80

RED's "Mission" =
Get to BLUE'S flag
and minimize RED

casualties

'■ .s t*-

"IK

time = 45

'■" .k .
• * •

■%lj /Wv..

»

time = 60

I. .li-.nv.

time = 100

201

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Future Enhancements to ISAAC
Table 1 (see page 8) lists nine generic properties of complex adaptive
systems and briefly summarizes their relevance to land combat. While
the details of the given comparison can be debated, as can the actual
characteristics that the table purports are shared by most complex
adaptive systems, the fact that it makes any sense at all to compare some
of the more obvious properties of land combat with those of complex
systems is in itself significant. It suggests that, in principle, land combat
ought to be amenable to precisely the same methodological course of
study as any other complex adaptive system, such as the stock market, a
natural ecology, or the human brain.

The obvious first step to take in such a course of study is to develop a
complex systems theoretic model of land combat "from the ground up"
(no pun intended!), making full use of the modeling and simulation
tools that have been developed by the complex systems theory
community in recent years to understand the behaviors of models of
many real complex adaptive systems. This means, in particular, that a
description of land combat must be developed that fundamentally
derives not from the solution of a set of Lanchester equations (though,
depending on the problem, this may be an entirely appropriate course
to take), but from a context in which the dynamics of combat are driven
by (1) a medium to large number of semi-autonomous agents, (2)
agents that are able to adapt — intelligently and in real-time — to
changing conditions, and (3) agents that filter, assimilate, and react
only to local information.

The version of ISAAC described in this paper represents a tentative first
step toward developing an inherently complex systems theoretic model
of land combat, and is motivated by a desire to extend the largely
conceptual links between complex systems theory and land combat, as
outlined in table 1, to forge a set of practical connections as well.

Assuming land combat can be described as a complex adaptive system,
the second — and ultimately most important — step is to determine the
universal high-level emergent behaviors that result from such a
description. The ultimate goal for ISAAC is for it to form the backbone
of a general purpose complex systems theoretic analyst's toolbox for
identifying, exploring, and possibly exploiting emergent collective
patterns of behavior on the battlefield.

Future versions of ISAAC will include many enhancements to the "core
engine" described in this paper. These enhancements will both provide
a greater sense of realism and enrich the overall battlefield
environment. There are five general categories of future
enhancements:

203

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• Basic enhancements to ISAAC'S "Core Engine"

• Memory and learning

• Nested ISAAC dynamics

• Data collection enhancements

• Enhancements to GA evolution

Basic Enhancements to the "Core Engine"

Basic enhancements will include (but not be limited to):

• More realistic ISAACA state-space

• Enhanced offensive and defensive capabilities

• An enhanced command and control structure

• Enhanced Personality "Value-Systems"

• Greater "Depth" to, and Variety of, Local Moves

• Added environmental realism

• Enhanced Combat Adjudication.

More Realistic ISAACA State-Space

ISAACAs currently exist in one of only three possible states: alive,
injured, and dead. Each ISAACA can therefore be encoded as a simple
scalar element: equal to 2, say, if alive, equal to 1 if injured and equal to
0 if no longer "playing." In future versions of ISAAC, the inner
state-space of each ISAACA will be enhanced by several additional
factors, and will thus effectively be described as a vector quantity. These
enhancements will include:

• Health

• Morale

• Combat quality

• Experience

• Movement vectors

• Meta-personality templates

204

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

An ISAACA's health at time t will reflect its overall combat-readiness.
Morale - meaning "a spirit, as of dedication to a common goal, that
unites a group"27 - will be a basic measure of unit cohesion and general
"fighting spirit." It will increase with (perceived) local combat "success"
and decrease with increasing damage (to a single unit and/or a unit's
squad).

Combat quality will be a general measure of how "well" a given ISAACA
performs its own mission, where "well" is measured relative to an
ISAACAs maximum combat characteristics. Higher combat quality will
assure a higher offensive "mission success" rate. For example, firepower
and maneuverability distributions might be weighted more towards the
higher end, say, using tail-end weighted beta-distributions. Combat
quality will increase with an ISAACA's experience, with higher quality
assuring a lesser degradation of morale under adverse conditions.

Since, in the current version of ISAAC, ISAACAs respond only to the
static configuration of nearby ISAACAs, direction and speed are
completely ignored. Future versions of ISAAC that incorporate a local
memory (see below) will also encode an ISAACA's speed and direction
in a movement vector.

Factors such as health, morale, combat quality, and experience can all
be used to define generalized ISAACA "profiles," or meta-personality
rule-templates, for associating given personality types with given local
contexts. In the current version of ISAAC, each ISAACA is endowed
with a single fixed personality (as defined by its personality weight
vector) and, perhaps, a few additional fixed constraints (such as advance,
cluster, and combat thresholds). In future versions, ISAACAs will be
endowed with context-dependent meta-personality templates that specify what
fixed personalities (and what additional constraints) will be used at
what time.

An increased state-space also allows for individual ISAACAs to be
ranked according to their defensive vulnerability (see next subsection).

Enhanced Offensive and Defensive Capabilities

In the current version of ISAAC, ISAACAs have a single notional offensive
weapon (characterized by a single-shot probability and a constraint on
the maximum number of enemies that can be targeted at one time) and
a single defensive capability (characterized by the "number of hits"
required to degrade a state from alive to injured or from injured to
"killed"). Future versions of ISAACAs will include a wider range of both
offensive and defensive capabilities, including:

27 American Heritage Dictionary, Third Edition, CD-ROM version 3.6, Houghton
Mifflin Company, 1994.

205

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• a mix both short- and long-range weapons, with appropriate
context-sensitive rules (both local and command-related)
prescribing their use

• weapon store, thus removing the unrealistic current infinite store
of required weapons and ammunition

• aim accuracy

• probability of kill, p^,,, that is different from single-shot "hit" probability,
p^, and will depend on individual targeted enemy units

• terrain camouflage, wherein terrain effects are included in both
defensive posturing strategies and offensive capability (see
below)

• weapon-specific vulnerability..

ISAAC will also include some form of reinforcement, wherein the user
(i.e., Supreme Commander) will define the manner in which injured
and/or killed ISAACAs will be replaced with "fresh" (i.e., alive)
combatants.

An Enhanced Command and Control Structure

As with almost all other components of the current version of ISAAC,
the rules defining command and control are very crude and not very
realistic. On the local command level, for example, these rules consist
essentially of providing a common reference point for clustering and
issuing local movement vectors to subordinate ISAACAs. On the global
command level, these rules consist of vectoring the movement of local
commanders toward the enemy flag by using certain global information
(that is not directly accessible by the local commanders themselves) and
prescribing the manner in which local commanders may "help" other
local commanders. These rules are currenüy very ad hoc, and represent
but one way among many to accomplish the same basic tasks.

An enhanced, more realistic command and control rule structure must
better respect the self-similar manner in which decisions are made on
each level of the hierarchy. Namely, the action of each decision-maker
(whether it is an ISAACA, a local commander, global commander or
the supreme commander) is predicated on that decision-maker
answering exactly the same series of fundamental questions:

• Question 1: What is my current goal (which may depend on
context and therefore change as the batde unfolds)?

• Question 2: What resources are at my disposal?

206

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• Question 3: How do I best make use of my available resources to
satisfy my current goal?

For example, an individual ISAACA, which represents the simplest
agent populating the ISAACian landscape, answers this series of
questions as follows:

• ISAACA. Answer 1: to get to the blue flag (as an example)

• ISAACA Answer 2: my only resource is my ability to move (either
a distance 1 or 2, depending on my movement range, or to stay
in my current position)

• ISAACA Answer 3: I must minimize my local penalty function
(which is defined as a weighted-sum of my current and projected
distances to nearby ISAACAs and my own and enemy flags).

Similarly, a local commander currently answers the same series of
questions as follows:

• LC Answer 1: to get to the blue flag (as an example)

• LC Answer 2: the individual ISAACAs that make up my squad

• LC Answer 3: I order all of my subordinate ISAACAs to move
toward the center of that "patch" in my local command area that
minimizes my local command penalty function

It is clear that the local commander's answer #3 is, at best, only a "first
approximation" of the solution to what is, in reality, a very complicated
optimization problem. In the current version of ISAAC, each LC orders
all of its subordinate ISAACAs to move toward the same point. While an
optimization, of sorts, is performed, it consists only of determining what
patch in the LC's command area to send all of the LCs subordinates to.
This is done purely for expediency, and does at all represent the "best"
approach.

A more realistic - albeit more time-consuming - approach is for the LC
to issue individually tailored movement orders to each of its subordinates, each
order being deduced by solving a local optimization problem. That is to
say, the LC's local decision problem really consists of finding the "best"
possible combination of moves for each of its subordinates, given the
overall state (consisting of both friendly and enemy ISAACAs) within its
local command area. Ideally, such a decision must also be based on the
LC's prediction of future states, making LC decisions very chess-like, at
least locally (see Nested ISAAC Dynamics).

207

irreducible Semi-Autonomous Adaptive ö>mbat (ISAAC): An Artificial-Life Approach to Land Warfare

Similarly, a more realistic decision problem that must be solved by a
global commander is to find the "best" possible combination of moves
(including criteria, or "templates" for LC-issued orders to their own
subordinates) for each of its subordinate local commanders, given the
overall (perceived) state of the batdefield.

In summary, future versions of ISAAC will include a more robust
command and control dynamical structure that consists of level-specific
"decisions" based on solving local optimization problems.

Enhanced Personality "Value-Systems"

The early version of ISAAC described in this paper introduces the
potentially powerful idea of basing the local decision-making process on
individual personalities. Personalities, however, are thus far defined fairly
crudely, and currently consist solely of assigning relative weights to the
desire to move closer toward alive or injured red and blue ISAACAs and
either of the two "flags."

More sophisticated personal "value-systems" can be imagined. For
example, provision might be made to allow individual ISAACAs to more
explicitiy weigh tradeoffs between risk versus potential (i.e., perceived)
payoff. The personality weight vector can also be generalized to allow
for user specification of different sets of personality "types." For
example, a certain number of ISAACAs on a given side can be declared
"defenders," and another "attackers."

In the current version of ISAAC, each ISAACA is endowed with at most
a single "goal," namely a propensity to move toward or away from the
enemy flag (as defined by an appropriate component of its personality
weight vector). If the local command option is enabled, individual
ISAACAs may also be ordered by their local commander to give some
weight to moving towards temporarily issued "local goals." In future
versions of ISAAC, individual ISAACAs will act according to unique, but
time and context dependent goals. In particular, ISAACAs will be able to
alter their own personalities as a function of both experience and
surrounding conditions. For example, local goals can depend on an
ISAACA's position within the battlefield; ISAACAs near their own flag
may assume a more "defensive" role (than that defined by their default
personality) while an ISAACA's "offensive" drive may increase as it
approaches the enemy flag.

Generalized Personality Matrix

Currentiy, the most general ISAACA personality - defined by weight
vector w - is a function only of state (i.e., either alive or injured) and
squad (if there is more than one). That is, each ISAACA can be assigned
two different weight vectors (and, thus, two different personalities) -
one for when it is in the alive state and one for when it is injured - and

208

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

these two personalities can be different for ISAACAs belonging to
different squads. All ISAACAs belonging to the same squad, however,
are assigned exacdy the same weight vector. Moreover, in the case of a
multi-squad force, the actual propensities for moving toward or away
from other ISAACAs (as defined by w) do not themselves depend on
the squad that those other ISAACAs belong to. In other words,
ISAACAs are currently unable to distinguish among ISAACAs that
belong to different squads. Communication is also "blind" to squad
labels in this sense.

In future versions of ISAAC, personality weight vectors will be
generalized in two ways:

• w will be a function of the complete vector quantity that
characterizes an ISAACAs inner-state space (i.e., health, morale,
experience, etc; see More Realistic ISAACA State Space). This
generalization will greatly enrich the dynamical range of
personality-driven responses that an individual ISAACA can
make.

• The actual propensities for moving toward or away from other
ISAACAs (as defined by w for ISAACA X, say) will themselves
depend on what X perceives to be the properties of those other
ISAACAs. In other words, the way in which X responds to an
ISAACA Y (or incorporates Y into its local penalty calculation)
will depend on the properties of Y that ISAACA X chooses to
associate with Y (or that X senses are possessed by Y).

Hostility Rings

In the current version of ISAAC, ISAACAs treat all other ISAACAs
within their sensor range equally, except for assigning different relative
weights to ISAACAs of different types (alive friendlies, alive enemies,
etc.). In future versions of ISAAC, ISAACAs will also be surrounded by
concentric "hostility rings" (or annuli) defining the relative degree of
importance assigned to neighboring ISAACAs. For example, a set of
enemy ISAACAs Sj that are closer to ISAACA X than another set S2 may
be assigned a higher weight (or priority). (See division of global
command sectors into hostility rings in GC Command of Autonomous LC
Movement.)

Recall sample run #10 (see figure 45), which illustrates the effect of
increasing red's sensor range relative to blue's. In discussing this run, we
speculated that as side X is forced to assimilate more and more
information (with increasing sensor range), there inevitably comes a
point at which X's overall fighting ability is effectively curtailed because
X's available resources are spread too thinly. This is assuming, of
course, that X's resources and/or tactics (i.e., "personality") remain

209

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

fixed. An obvious question to ask regarding this example, is "How ought
X to adapt its personality in order to perform (its mission) at least as
well using increased sensor capability?" Part of the solution might
depend on each ISAACA having the ability to prioritize all of the
information contained within its sensor field. A genetic algorithm can
then be coupled with this extended local dynamical parameter space to
search for "optimal" local prioritization schemes.

Another possibility is to pattern a more sophisticated internal
value-system after Smith's "Calculus of Ethics" [30].

Greater "Depth" to, and Variety of, Local Moves

In the current version of ISAAC, ISAACAs are, at any time t,
constrained to move to one of either 8 (if the movement range rM = 1)
or 24 (if the movement range rM = 2) nearest neighbor sites. In future
versions, ISAACAs will not only be allowed to move over greater
distances (thereby effectively adding a velocity parameter to the overall
parameter specification list of a given ISAACA; see More Realistic
ISAACA State Space), but will also be able to develop local tactics and
strategies of projected sequences of moves (see Memory and Learning).

For example, as the environment is enhanced to include various types
of terrain and obstacles (see Added Environmental Realism), ISAACAs
will be forced to weigh factors beyond the simple "proximity to enemy
and friendly force" factor that is currently the sole determinant of its
local penalty function. Local move decisions will, in future versions,
require some form of rule-based "tactics" to dynamically integrate such
factors as line-of-sight, the "passability" of a given terrain type, and
degree of camouflage.

Added Environmental Realism

The addition of terrain and other obstacles to the environment
simultaneously adds a layer of complexity to the kinds of local moves
ISAACAs can take and increases the level of sophistication of local
tactics and strategies. Different kinds of terrain will include...

• flat/rough

• road

• forest

• hill

• river

• minefields

210

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• structure (bridges, storage, bunkers, etc.)

Terrain will also be characterized by

• altitude (which will affect line-of-sight)

• movement (i.e., "passability") index, which will be a function of the
kind of ISAACA occupying a given battlefield cell

• camouflage (or "fog") index, which will affect visibility and/or
identifiability)

A simple way to implement a fog-index is to add two rule "templates":
(1) Visibility Rule-Template = ISAAGAs located in, say, a forest cell Cforest,
are made visible only to ISAACAs that are immediately adjacent to
^forest» and (2) Defensive Enhancement Rule-Template = provide a specified
fractional increase to the defensive strength of all ISAACAs within a cell
of a given terrain type.

Enhanced Combat Adjudication

In the current version of ISAAC, combat is resolved in a very crude
manner. Each ISAACA is given an opportunity to "fire" at any enemy
ISAACA that is positioned within that ISAACA's fire range. If an
ISAACA is shot by an enemy ISAACA (with a user-specified probability),
its current state is degraded either from alive to injured or from injured
to killed. In future versions of ISAAC, combat adjudication will be
enhanced in at least two ways:

1. The addition of more realistic lethality contours surrounding
each ISAACA. For example, some ISAACAs may have a greater
forward firepower or have a firepower that diminishes with
range to target.

2. The addition of selective power projection; i.e., the ability to tailor
an engagement strategy to a local context (see below).

The enhanced set of engagements strategies will include:

• Direct ISAACA <-> ISAACA fire - in which ISAACA X "sees" an
enemy Y (and vice-versa) and both engage in one-on-one
combat. The outcome is determined probabilistically, as in the
current version, but takes into account weapon strength, range,
morale, defender's strength and visibility.

211

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• Area fire - in which an ISAAC X "knows" or suspects that an
enemy ISAACA Y is located within an area A (consisting of, say,
an N-by-N array of battlefield "cells") and blindly fires at a
random cell or cells in A.

• Collective fire - in which a set of ISAACAs - X„X2, ..., Xn -
coordinate their fire into a patch of enemy territory (an area of
size A at range R).

Targeting Strategies

In the current version of ISAAC, each ISAACA individually decides to
target a randomly selected set of enemy targets (up to the user-specified
maximum number allowed) that are located within a fire range rF of
their position. In future versions, all power projection and targeting
strategies will be decided in a more "intelligent" fashion by
incorporating information about enemy defenses, position, movement
vectors, perceived health, morale, combat quality, and so on.

Locally, ISAACAs will weigh such tradeoffs as targeting less capable but
closer enemy units (that may therefore be more likely to be "hit") vice
targeting more capable enemy units that are located farther away (and
that may therefore be less likely to be "hit" if targeted). On a local
command level, local commanders will coordinate fire among its
subordinate ISAACAs by issuing targeting priorities and engagement
strategies (direct, area, or collective; see above).

Memory and Learning

As is true of any complex adaptive system, land combat consists not just
of mindless combatants following some prescribed set of rules, but of
intelligent and adaptive combatants who, over time, can both learn from
their past mistakes and modify the default rule set that they initially
entered combat with.

In the current version of ISAAC, however, ISAACAs are very limited in
their ability to modify their default personalities. Their adaptability
consists essentially of being able to slighüy alter their default
personalities according to a set of local threshold constraints, measured
with respect to a user-specified threshold range (see ISAACA
Personalities). For example, while certain ISAACA's might have a
personality that drives them to always move toward friendly ISAACAs
(according to some positive relative weight), they might also be driven
by an auxiliary constraint condition that effectively clamps that default
positive weight to zero whenever they are surrounded by a threshold
number of friendly forces. In this way, their weights — and therefore,
their personalities — adapt to local contexts.

212

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

But this adaptation is clearly very basic. While weights may be either set
to zero or have their sign flipped (from positive to negative or vice
versa), their actual relative values never change. Instead — for
maximum growth potential — ISAACAs need to be able to both
adaptively change their entire personality structure and learn from their
past experiences.

One simple way to augment ISAAC'S current adaptability algorithm is to
define meta-personalities that would, for example, either increase the
relative weight for moving toward an enemy as the distance to enemy
forces decreases (to define a class of "strongly aggressive" forces), or
increase the relative disparity between moving toward an enemy and
moving toward the enemy's goal as the distance to that goal decreases
(to define a personality class that becomes more eager to attain the goal
as it gets closer to it). (See discussion in More Realistic ISAACA
State-Space).

Another, more powerful way to make ISAACAs more flexible in
adapting to their environment is to incorporate some form of memory.

Memory

ISAACAs currently have no memory. At each time step, they assimilate
the information within their sensor's field-of-view and either choose to
"do nothing" or move into some adjacent site. All previous moves are
"forgotten," and no "anticipated" future moves (such as might be part of
a projected series of moves, or strategy) affect their decision-making
process.

Future versions of ISAAC will include an ISAACA memory. Each
ISAACA will be able to store, retrieve, and incorporate into its
decision-making process a memory of a certain number of its most
recent moves. Moreover, ISAACAs will be able to retrieve a certain
number of past configurations within their sensor's field-of-view; i.e., the
actual positions of all friendly and enemy ISAACAs within their sensor
range. Memory of the past successes and failures of other ISAACAs, and
those of the strategies of previous local and global commanders, will
also be considered.

A memory capability — particularly when coupled with a more
expansive set of possible moves that ISAACAs will be allowed to select
from on any given time step (see Greater "Depth" to, and Variety of, Local
Moves above) — leads naturally to the development of tactics and
strategies. For example, individual moves will no longer be defined (as
they are now) solely in terms of a local penalty minimization, but will
involve both (1) a minimization of projected penalty (wherein an ISAACA
will select a move that is based, in part, on an anticipated sequence of
moves, (m,,m2,...mn), and their consequences), and (2) a consideration

213

irreducible .Semi-Autonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

of the efficacy of past moves made in similar configurational contexts
(see discussion below).

NeuralrNetwork-Derrved Move Selection

In the current version of ISAAC, move selection is based on a few
simple local rules. These rules are "hard-wired" in at run time. They also
make only a very limited use of the total information within an
ISAACA's sensor range. In particular, an ISAACA does not explicitly
take into account the exact disposition of forces in its field-of-view,
basing its decision to move, instead, on only the absolute or relative
numbers of nearby ISAACAs. A more powerful approach is to enable
ISAACAs to make better use of all of the information that is locally
accessible by them, which includes knowing force positions as well as force
strength. A powerful tool with which this can be accomplished is the
neural network (see pages 104-116 of [2]).

Figure 80. Illustration of a neural-net assigned move m (at time t+1)
given a local state S at time t

■ ■
m

■
State S at time t Neural net prescribes move m

for time t+1

The idea would be to teach an ISAACA (in either supervised or
unsupervised fashion) to associate a particular move (= m) with a given
overall local state (= 5). The local state includes the numbers and
positions of all friendly and enemy forces. In later versions of ISAAC, 5
will also include terrain and other obstacles.

Reinforcement Learning

Reinforcement learning is the problem that any autonomous adaptive
agent faces when learning a strategy via trial-and-error interactions with
its environment. There are two general strategies for attacking this
problem [31]: (1) search through the space of all possible behaviors to
find the one that performs "best" in a given environment (this is the
approach taken by genetic algorithms); or (2) find a well-defined
method of assigning credit to individual actions taken in response to

214

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

given states of the environment. The latter strategy, provided by
reinforcement learning theory, involves a wide variety of techniques:
greedy strategies, randomized techniques, adaptive heuristics,
Q-learning, Bayesian reasoning techniques, and temporal-difference
learning, among many others.

In each case, the underlying idea is the same. An ISAACA is connected
to its environment via its sensor (which feeds information to the ISAACA
out to within a range rc) and action, which, in the general case, will
involve strategies consisting of several projected moves. At each
iteration step, an ISAACA receives input about the current state of its
environment and chooses a particular move as output. Since this action
obviously changes the state of the environment (of which each ISAACA
is an integral part), one can imagine that — once a move is made —
there is either an implicit or explicit reinforcement signal that is fed back
to the ISAACA, telling it how "good" its move really was. For example,
"Did it really get closer to enemy ISAACAs, as it wanted?" Or, "Did it
mistakenly get farther and lose sight of some enemy forces?" An
ISAACA ought to choose moves (and form strategies) — essentially, map
actions to states (as depicted in figure 80) — that tend to maximize some
long-term measure of reinforcement.

Note that this is very different from, say, supervised neural-net learning,
which involves teaching an agent to associate input and output pairs by
learning a test set of "training facts." In reinforcement learning, an
ISAACA may be given an immediate "reward" after making a move
(thumbs up/thumbs down, or some other measure), but it is not told
explicitly which move would have been the best one to take. The
ISAACA must come up with an optimal strategy by itself, using only its
experience. Its task (as well as the designer's) is made more difficult
still, by the fact that the criteria for assigning an appropriate
reinforcement signal for current or past actions is far from trivial. For
example, it is generally difficult to decide which one move (or set of
moves), out of a sequence of moves that ends in a high-payoff end-state,
was actually the "best" one to take, and is therefore the move (or
moves) to which the highest "reward" ought to be assigned.28 It is also
not always clear what the "end-state" is, or how to long to wait to make
an assignment. One class of techniques that is designed to deal with this
problem is the so-called method of temporal differences [32]. This class
takes its name from the fact that it consists essentially of adjusting the
values of states according to differences between the immediate reward
and the estimated value of the next state.

A recent, and in many ways remarkable, application of reinforcement
learning to game playing is Tesauro's temporal difference algorithm for
backgammon [33]. Since backgammon has on the order of 1020

possible states, it is impractical to use a brute-force search strategy.

28 This general problem is known as the Credit-Assignment Problem, and is discussed by
many authors. For a discussion, see [31].

215

Irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Tesauro's model (TD-Gammon), which also uses a backpropagation
neural-net to aid the temporal difference learning algorithm, has
learned to play backgammon so well that, at the time of this writing, it is
considered to be one of the best "players" in the world.

Current design plans for future versions of ISAAC include building
some form of reinforcement learning techniques into each ISAACA's
decision-making process.

Nested ISAAC Dynamics

Agents in a real complex adaptive system can be expected to behave
and adapt according to some internal model that they have constructed
for themselves of what they believe their environment is really like. In
particular, field commanders base their command decisions, in part, on
what their intelligence support tells them has happened thus far on the
battlefield and what the enemy's current order-of-battle is, and, in part,
on their own best intuition of how events will unfold in the future.

Figure 81. A schematic representation of "nesting" in ISAAC

The "real" battlefield in ISAAC

D
D

D

Field Commander (A) D

' \ ' s — — "---' " -'

D
D

D
D

■ D

A's (imperfect) internal representation of the battlefield

Sometimes, if the environment is simple enough, such models of
potential futures are fixed and simple; sometimes, if the environment is
complex, agents need to actively construct hypothetical models and test
them against a wide variety of assumptions about initial states and rules
and so forth. What must eventually be added to ISAAC is the ability to

216

Irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

use nested representations of the unfolding combat to allow each local
and global commander to essentially create and manage simulations of
the entire battlefield. Commanders must thus be able to base their
decisions and behavior on their simulated picture of the batde (see
figure 81).

Note that this split-level nesting allows a myriad of fundamental
command and control questions to be asked:

• What is the real "value" of information ?

• How can I quantify the effects of incomplete knowledge?

. • How can I exploit what I know the enemy does not know about me?

• How does my combat effectiveness degrade with decreasing reliability of
information ?

• etc.

(For a further discussion of these issues, see the concluding section -
Two Closing Speculations). It should also be noted that a nested dynamics
such as the one described here is also a basic design feature of the Santa
Fe Institute's more general-purpose Swarm modeling system (see Recent
Examples of Agent-Based Simulations in the Introduction).

Data Collection Enhancements

To facilitate a quantitative vice purely qualitative understanding of the
unfolding patterns of combat, ISAAC provides a rudimentary set of data
collection tools. These tools currently consist of (1) time series plots of
various changing quantities describing the step-by-step evolution of a
given battie, and (2) measures of "how well" certain primitive mission
objectives are met at a batde's conclusion. The first group of tools
(using built-in statistics measures) yields quantitative snapshots of a
batde as it unfolds in time; the second group (using a simple
parameter-space mapping technique) yields semi-quantitative measures
of "success" at a mission's end. Details are given in Data Collection.

As ISAAC'S core engine is enhanced in future versions, so too will
ISAAC'S core set of data collection tools be enhanced to provide a
better quantitative understanding of the overall ISAACian dynamics. It
is impossible to predict the precise form that these data collection
enhancements will take, except to say that they will obviously be
developed alongside (and therefore complement) whatever
enhancements are made to ISAAC'S core engine. Below, we give a feel
for the kind of enhancements that can be made by briefly discussing
three enhancements that were planned for the current version but were
not included for lack of time:

217

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• Trajectory-difference Measures

• Combat Entropy

• Activity Maps

The general spirit behind making any future enhancements to ISAAC'S
data collection capability will be to incorporate ideas from Tier-IV of
the "Eight Tiers of Applicability" discussed in [2] (see Table 2). Recall
that Tier-IV applications consist of using nonlinear-dynamics and
complex systems theoretic inspired measures to describe the complexity
of combat; i.e., power-law scaling, Lyapunov exponents, entropic
measures, attractor reconstruction techniques, relativistic information,
etc.

Trajectory-Difference Measures

Military historians are fond of citing examples from past conflicts to
argue that "were it not for factor X" an outcome of a battle might have
been very different. Factor X can be a "few more good men," "greater
will to fight," or a "field commander's intuition." While such arguments
may or may not be directly strengthened by ISAAC, ISAAC can be used
to explore such issues by measuring differences between two (or more)
trajectories.

Specifically, future versions of ISAAC will include a facility to visually
display the difference between two evolutions, using different sets of initial
conditions, combat personalities, and/or force strengths. One
technique - called a trajectory-difference plot (TDP) - is to color a pixel at
position (x,y) if and only if the information at (x,y) is different for two
runs, A and B. Assuming the initial spatial dispositions for red and blue
are the same for A and B, and that the factor X is "small" (that is, it does
not immediately have a pronounced effect on the overall evolution),
the TDP will initially be mostly blank. Colored areas will begin
appearing as As and B's trajectories diverge. In this way, one will be
able to direcdy explore such questions as "What difference will it make to
increase my force strength by 10%?" ox "What difference will it make to be more
aggressive (or defensive) ? "

Combat Entropy

Carvalho-Rodriques [34] has suggested using entropy, as computed
from casualty reports, as a predictor of combat outcomes. Whether or
not combat can be described as a complex adaptive system, it may still
be possible to describe it as a dissipative dynamical system (see [1], page
28). As such, it is not unreasonable to expect entropy, and/or entropy

218

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

production, to act as a predictor of combat evolution.
Carvalho-Rodriques defines his casualty-based entropy E by

Ni & Ci/Ni

where C; represents the casualty count (in absolute numbers) and N;
represents the force strength of the i* adversary (either red or blue). It
is understood that both C; and N; can be functions of time.

The plot of the functional form E(x) = x log (1/x), where x = C; /N{,
has a peak at about 0.37. One could interpret this to mean that once
C/Nj goes beyond the peak, "it is as if the combat capability of the
system ... declines, signifying disintegration of the system itself."29

Woodcock and Dockery [35] provide strong evidence that
casualty-based entropy is a useful predictor of combat. They base this
on analysis on both time-independent and time-dependent combat data
derived from detailed historical descriptions of 601 battles from circa
1600 to 1970, exercise training-data obtained from the National
Training Center and historical records of the West-Wall campaign in
World-War II and Inchon campaign during the Korean war.

They find that plots of Ea (attacker entropy) versus Ed (defender
entropy) are particularly useful for illustrating the overall combat
process:

• Region I: a low entropy region corresponding to low casualties
and ambiguous outcomes. Initial phases of a battle pass through
this region, with the eventual success or failure for a given side
depending on the details of the trajectory in this en tropic space

• Region II: a region of high entropy for the defender and low
entropy for the attacker indicates the attacker wins

• Region III: a region of ambiguous outcomes, like region I, region
III represents high attrition with outcomes depending on the
direction of the trajectory. (Woodcock and Dockery indicate that
only simulated combat appears able to reach this region.30)

• Region IV: an analogue of region II, where the entropy roles are
reversed and the defender wins.

Woodcock and Dockery further suggest that the measurement and
display of coupled casualty and reinforcement rates may be a first step
towards quantifying the battle tempo. "The tempo is then seen to

Reference [35], page 197.
Reference [35], page 223.

219

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

characterize, not the physical rate of advance (the usual connection),
but rather the rate of structural breakdown of the fighting force."31

We note, in closing, that Carvalho-Rodriques's definition of a
casualty-based entropy is but one possible definition. One could
alternatively use generalizations of the Renyi-entropy, Kolmogorov-Sinai
entropy, or topological entropy, among many other definitions. Despite
the seeming simplicity of the basic idea, there is strong evidence to
suggest that entropy will play a fundamental role in understanding the
underlying dynamical processes of war.

Activity Maps

In the current version of ISAAC, individual ISAACAs adapt to changing
conditions in a very simple manner. Adaptability is essentially confined
to either altering the sign of, or zeroing out completely, one or more
components of an ISAACA's personality weight vector. Future versions
will include a more sophisticated meta-personality-driven dynamics, in
which personalities become full functions of local context (see More
Realistic ISAACA State-Space).

An important insight into the dynamics of an unfolding battle may be
gained by examining a battle's activity map; i.e., a map not of the
positions (and movement vectors) of individual combatants (such as is
currently provided by ISAAC'S simple graphical display of individual
ISAACA positions), but a map that represents the manner in which each
combatant is adapting to changes in his local environment.

An activity map of areas in which the combatants' default rule set is
adequate for dealing with local conditions will show little or no activity.
An activity map of areas in which the combatants' meta-personalities are
repeatedly used to alter their default rules sets will highlight a high
activity level. Areas of higher activity may be correlated with local
dynamical conditions that are particularly "sensitive to perturbations"
and/or with far-from-equilibrium behavioral patterns. ISAAC can then
be used to explore such questions as "How can I (as a local commander)
introduce a set of combat conditions that will keep the enemy in a 'highly active'
state while maintaining a relatively stable state for my own forces'?"

An activity map can also be thought as a particular example of a more
general decision-space map, in which sites on the battlefield are colored
coded to represent the "decision-flow" of ISAACAs and/or local and
global commanders. One can imagine using ISAAC to address such
questions as "What kinds of decisions does an ISAACA make?"; "When?";
"Why?"; "What local dynamics and patterns tend to disrupt an enemy's
decision-making capability?", among others.

Reference [35], page 227.

220

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Enhancements to GA Evolution

Reference [2]32 discusses several recent attempts to use genetic
algorithms to "evolve" strategy and tactics, including deriving tank
tactics, and to act as the critical dynamical component of tactical
decision aids. As one might suspect, genetic algorithms also figure
prominently in design plans for future versions of ISAAC.

Future versions of ISAAC will be able to be run in any of three distinct
modes:

1. Fixed Rules, which involves no learning and consists of applying
a set of fixed local cellular-automata-like rules as they are
implemented in the current version of ISAAC.

2. Fixed strategies, which consists of applying a fixed set of adaptive
personalities and/or strategies that are found (i.e., "evolved")
prior to run-time.

3. Adaptive learning, which will consist of real-time adaptive
learning strategies as the system evolves. In this mode, ISAACAs
will act according to both fixed personalities, rule sets, and
strategies and according to rules and strategies that they are
able to "discover" as they evolve.

Depending on what mode the user chooses to run ISAAC, the second
step will consist of using a genetic algorithm to find — or "evolve" — the
"best fit" ISAACAs for a given scenario. In mode 2, the genetic
algorithm is asked to search for the best mix of personalities and/or
strategies to use against a particular opponent, or opponent type. Once
this mix is found, the personalities and strategies are clamped and one
then proceeds with the actual run from which sample data can be
extracted for analysis. In mode 3, the genetic algorithm is an active part
of a given run, and is used as an integral dynamic component providing
real-time adaptability.

In either case, the genetic algorithm is used to search the enormous
range of possible attributes of an ISAACA for the "right mix" of
parameters that define a desired force capability. The objective function
that defines what is meant by "right mix" is defined at the user's
discretion. (See, however, the last section of this paper for speculations
on how ISAAC itself can be used to suggest alternative objective
functions.)

In the current version of ISAAC_GA (i.e., the stand-alone genetic
algorithm "front-end" to ISAAC'S core engine), the GA is used to evolve

32 See pages 85-94.

221

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

a pool of red personalities to perform a given mission against a fixed
blue force. The only variability that is allowed on the blue side is its
spatial disposition. (Recall that the GA automatically averages over a
user-specified number of initial conditions.) Moreover, red's mission
"fitness" is defined as a weighted function of certain mission
"primitives" (such as "minimizing time to enemy flag", "minimizing
casualties," and so on) that are defined entirely from red's perspective.
Future versions will enhance this basic GA engine in several ways:

1. The GA recipe (see The Basic GA Recipe in Genetic Algorithm
Evolutions oflSAACA Personalities) will be enhanced to speed up
both convergence and execution times. The current program is
of proof-of-concept caliber only, and can be improved upon in
many ways.

2. The full (i.e., multi-squad), rather than truncated, version of
ISAAC will be used so that the GA can search for optimal
squad-specific sizes and personalities and include both
local-command and global-command-related parameters in its
search space.

3. Red's current red-centric mission fitness will be generalized to
include blue-primitives. Instead of defining red's mission fitness
by focusing entirely on how well red performs, the user will also
be given the option of including primitives defining how well
(or badly) blue performs. For example, red may assume a
specific mission for blue, and then include an assessment of
how well blue performs that mission as a part of an assessment
of its own mission. Red thus effectively will be given an ability to
consider not just how well it is doing (i.e., to maximize its own
fitness), but how badly blue is doing, from red's perspective (to
simultaneously minimize blue's fitness).

4. The GA will be used to evolve personalities for both the entire
force (as it does currently) and individual ISAAGAs.

Future development of ISAAC'S GA search capability is also likely to
borrow from Hillis' coupled-GA strategy [6]. Since this strategy is
discussed at the end of appendix B, we will here only outline the
approach. The idea is to set up not one but two interacting genetic
algorithm populations, one population consisting of "solutions" (or, in
Hillis' original formulation, hosts), and the other consisting of
"problems" (or, parasites). Having the two populations interact
effectively sets up an "arms-race" between the two populations. While
the hosts are trying to find better and better ways to sort the problems,
the parasites are trying to make the hosts less and less adept at sorting
the problems by making the problems "harder."

222

^reducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

The interaction between the two populations dynamically alters the
form of the fitness function. Just as the hosts reach the top of a fitness
"hill," the parasites deform the fitness landscape so that the hill
becomes a "valley" that the hosts are then forced to find ways to climb
out of and start looking for new peaks. When the population of
programs finally reaches a hill that the parasites cannot find a way to
turn into a valley, the combined efforts of the co-evolving hosts and
parasites has found a global optimum. Thus, the joint, coupled,
population pools are able to find better solutions quicker than the
evolutionary dynamics of populations consisting of sorting programs
alone.

The application to ISAAC is conceptually straightforward. The idea is to
apply genetic algorithms not to just one side of a conflict, or to use
genetic algorithms to find "optimal" combat tactics for fixed sets of
constraints and environments, but to use joint, coupled, pools of
populations, one side of which represents a set of tactics or strategies to
deal with specific scenarios, and the other side of which seeks ways to
alter the environment in ways that make it harder and harder for those
tactics or strategies to work. Thus, future versions of ISAAC_GA will be
able to search not just in the red personality space for a fixed blue
force, but in a joint red:blue personality space in which blue's "mission" is
to make it as hard as possible for red to succeed.

223

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

What Is ISAAC Useful For?
ISAAC has been developed primarily to address the basic question: "To
what extent is land combat a self-organized emergent phenomenon?" As such, its
intended use is not as a full system-level model of combat but as an
interactive toolbox (or "conceptual playground") in which to explore
high-level emergent behaviors arising from various low-level (i.e.,
individual combatant and squad-level) "interaction rules." The idea
behind ISAAC is not to model in detail a specific piece of hardware
(M16 rifle, M101 105mm howitzer, etc.), but to provide an
understanding of the fundamental behavioral tradeoffs involved among
a large number of notional variables.

Because ISAAC takes a bottom-up, synthesist approach to the modeling of
combat - vice the traditional top-down, or reductionist approach -
ISAAC'S conceptual focus is very different from the focus of most
conventional models. For example, models based on differential
equations homogenize the properties of entire populations and ignore
the spatial component altogether. Partial differential equations - by
introducing a physical space to account for troop movement - fare
somewhat better, but still treat the agent population as a continuum. In
contrast, ISAAC consists of a discrete heterogeneous set of spatially
distributed individual agents (i.e., combatants), each of which has its
own characteristic properties and rules of behavior. These properties
can also change (i.e., adapt) as an individual agent evolves in time.

Most traditional models focus on looking for equilibrium "solutions"
among some set of (pre-defined) aggregate variables. The LEs
themselves are effectively mean-field equations (in the parlance of
physics), in which certain variables such as the attrition rate are
assumed to represent an entire force and the outcome of a battle is said
to be "understood" when the equilibrium state has been explicitly
solved for. In contrast, ISAAC focuses on understanding the kinds of
emergent patterns that might arise while the overall system is out of
equilibrium.

In ISAAC, the "final outcome" of a battle - as defined, say, by measuring
the surviving force strengths - takes second stage to exploring how two
forces might "co-evolve" during combat. A few examples of the
profoundly non-equilibrium dynamics that characterizes much of real
combat include: the sudden "flash of insight" of a clever commander
that changes the course of a battle; the swift flanking maneuver that
surprises the enemy; and the serendipitous confluence of several
far-separated (and unorchestrated) events that lead to victory. These
are the kinds of behavior that Lanchesterian-based models are in
principle incapable of even addressing. ISAAC represents a first step
toward being able to explore such questions.

225

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

ISAAC is designed to allow the user to explore the evolving patterns of
macroscopic behavior that result from the collective interactions of
individual agents, as well as the feedback that these patterns might have
on the rules governing the individual agents' behavior. While this
preliminary version of ISAAC can do no more than suggest new ways of
thinking about some old issues, it is encouraging to note that, even at
this early juncture, ISAAC already has an impressive repertoire of
emergent behaviors:

• Forward advance

• Frontal attack

• Local clustering

• Penetration

• Retreat

• Attack posturing

• Containment

• Flanking Maneuvers

• Defensive posturing

• "Guerilla-like" assaults

• Encirclement of enemy forces

• many more...

Moreover, ISAAC frequently displays behaviors that appear to involve
some form of "intelligent" division of red and blue forces to deal with
local "firestorms" and skirmishes, particularly those forces whose
personalities have been "evolved" (via a genetic algorithm) to perform a
specific mission. It must be remembered that such behaviors are not
hard-wired-in but are effectively an emergent property of a
decentralized and nonlinear local dynamics.

The ultimate goal is for ISAAC to become a fully developed complex
systems theoretic analyst's toolbox for identifying, exploring and
possibly exploiting emergent collective patterns of behavior on the
battlefield.

The payoff of using ISAAC, or some other multiagent-based model of
land combat, is a radically new - and decidedly non-Lanchesterian - way
of looking at some fundamental issues of land warfare. Specifically,
ISAAC is being designed to help analysts ...

• Understand how all of the different elements of combat fit
together in an overall "combat phase space"

• Understand the out-of-equilibrium patterns of behavior vice the
approach to equilibrium states stressed by most conventional
models

226

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

• Identify and explore emergent collective patterns of behavior on
the battlefield

• Understand the effects of information uncertainties,
inaccuracies, and time-delays

• Assess the value of information: How can I exploit what I know the
enemy does not know about me?

• Explore tradeoffs between centralized and decentralized
command-and-control (C2) structures: Are some C2 topologies more
conducive to information flow and attainment of mission objectives than
others? What do the emergent forms of a self-organized C2 topology look
like?

• Provide a natural arena in which to explore consequences of
various qualitative characteristics of combat (unit cohesion,
morale, leadership, etc.)

• Study the general efficacy of combat doctrine and tactics

• Explore emergent properties and/or other "novel" behaviors
arising from low-level rules (even doctrine if it is well encoded)

• Capture universal patterns of combat behavior by focusing on a
reduced set of critical drivers

• Suggest likelihood of possible outcomes as a function of initial
conditions

• Provide near-real-time tactical decision aids by providing a
"natural selection" (via a genetic algorithm) of tactics and/or
strategies for a given combat scenario.

Furthermore, ISAAC provides a natural arena in which to explore the
Clausewitzian "fog-of-war," or the effects of uncertainties and/or
inaccuracies of intelligence data and of time-delays in reporting
information. More important, from an Information Warfare perspective,
ISAAC provides a framework for quantifying the "value" of information
on a battlefield. ISAAC can, in principle, be used to explore the
consequences of given (personality-defined) force and/or weapon
mixes. It can also be used to re-examine traditional measures of combat
effectiveness and define requirements for what might loosely be called
nonlinear data collection, which refers to data that capture the
continuously evolving relationships among all of the interdependent
components of combat (as compared with more static measures — such
as force attrition — commonly used by conventional models).

227

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Before illustrating how ISAAC (or its future versions) can be used to
explore three sample issues in land warfare, we first briefly describe
what a typical "new sciences" approach really entails.

How is Work in the "New Sciences" Actually Done?

There is a popular misconception that complex systems theory is a
well-defined science; that it consists of some canned set of software
routines ready to be downloaded from, say, Microsoft's WWW site, and
directly unleashed on whatever "complex problem" happens to strike
one's fancy. This cannot be further from the truth. The reality is that
much of what goes under the name of "complex systems theory"
actually consists of a hodgepodge of on-the-fly hand-crafted and
tinkered techniques and approaches that say more about the research
style of a particular complex systems "theorist" than they do about the
how the new sciences are practiced as a whole. There is certainly no
existing complex systems theory model per se that can be ported over to
describe land combat. The current crop of models are either
specifically tailored to particular problems or are general purpose
simulators (like the Santa Fe Institute's SWARM programming
language) that must be carefully tuned to apply to specific systems.

In fact, most "new sciences" research is generally practiced by following
these basic steps (these steps are not meant to be taken facetiously!):

Step 1 - Think of an interesting question to ask regarding the
behavior of a real system (or find a real system to study)

Step 2 - Simplify the problem as much as possible without losing
the "essence" of the system

Step 3 - Write a program to simulate the individual agents of the
system, following simple rules with specified interactions

Step 4 - "Play" (i.e., interact) with the simplified models of the
/ system ■

Step 5 - Sitibackandwatch forpatterns; run the program many
times to build up statistics and an intuition for when and
how different patterns emerge

Step 6 - Develop theories about how (£e real system behaves

Step 7 - Tinker with the model, change prameters, identify
sources of behavioral changes, simplify it even fürther

Step 8 - Repeat steps 4 through 7!

The critical steps - steps four through seven - are highlighted in gray.
The most important step is step five: sit back and watch for patterns.'Much
of the early work with trying to understand the behavior of a system
consists of finding ways to spot overall trends and patterns in the
behavior of a system while continually interacting and "playing" with

228

Irreducible &mi-Autonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

"toy-models" of the system. If one is serious about applying the "new
sciences" to land warfare, one must be ready to rethink some of the
conventional strategies and approaches to modeling systems.

Figure 82. Interplay between experience and theory in the forward-
and inverse-problems of complex systems theory

"Forward Problem"
(Identify Patterns

Real
Combat

Complex
Systems
Theory

"Inverse Problem "
(Induct simpler rules)

Experience

Another important element of the basic approach of complex system
theory to understanding the behavior of complex systems is that the
forward-problem, and inverse-problem must both be studied
simultaneously (see figure 82), and that the interplay between
experience and theory is never overlooked.

The forward-problem consists essentially of observing either real-world
behavior or the behaviors of a model of a complex system with the
objective being to identify any emergent high-level behavioral patterns
that the system might possess. The inverse problem deals with trying to
induct a set of low-level rules that describe observed high-level
behaviors. Starting with observed data, the goal here is to find
something interesting to say about the properties of the source of the
data. The forward problem is therefore concerned with theoretical tools
that are used to identify patterns, while the inverse problem is concerned
with tools that are used to induct low-level rules (or models) that generate
the observed high-level behaviors.

A lengthier discussion of modeling and simulation and how it pertains
to land warfare appears in [1] and [2]. Thoughtful discussions about
the general use of models are given by Denning [36] and Casti [37].

229

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Sample Issues

Below, I briefly discuss how a multiagent-based model such as ISAAC
can help explore three sets of fundamental issues:

1. Centralized versus decentralized command and control structures

2. The role of the "human element" in combat modeling

3. The relationship among all of the dynamical elements of combat.

Centralized Versus Decentralized Command and Control Structures

In its simplest run-mode, ISAACian dynamics is stricüy decentralized:
ISAACAs do not communicate with other ISAACAs and all ISAACAs
base their decisions on information that is strictly local to their sensor's
field-of-view. In this mode, ISAAC represents a simple "toy-model" view
of a strictly decentralized combat. ISAAC'S built-in command and
control structure can be Used to explore the consequences of having a
centralized versus decentralized C2 structure. Moreover, because of
ISAAC'S simple design, more probing questions regarding, for example,
how the overall efficacy of a given command and control system
depends on its hierarchical structure (i.e., connectivity) can also be
addressed.

Figure 83. A schematic representation of an ISAACA C2 structure

Level N+l

Level N

LevelN-l

o o o

•°x 0

Recall that each ISAACA lives on a simple two-dimensional lattice, and
is free (within constraints) to move in all directions up to a specified
range. Each ISAACA is also "connected" (i.e., can communicate with)

230

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

other ISAACAs on an underlying graph that determines the command
and control hierarchy. That is, each ISAACA on a level N of the
hierarchy receives information and/or orders from ISAAGAs on the
next higher level (level N+l) and disseminates information and/or
orders to ISAACAs on the next lower level (level N-l). Each ISAACA,
on any level, can receive information, send information, and act on
information, appropriate to all ISAACAs on the given level. ISAACAs on
the lowest level (level 1) represent units that physically interact with
enemy units in the lattice environment (see figure 83).

Figure 84. Behavior (arbitrary measure) as a function of C2 structure

Behavior A depends on chosen measure
A

► C2 topology
Totally Totally

Disconnected Connected

Imagine a topology landscape, ranging from the trivial totally
disconnected graph on one end, to the (equally as trivial) totally connected
graph on the other, with all possible graphs (and therefore all possible
C2 structures in between); see figure 84. The problem is to determine
how the overall behavior changes (either qualitatively or quantitatively)
as the landscape is systematically swept from one end to the other:

• How does the topology affect behavior?

• Are some topologies more conducive to information flow and attainment
of objectives than others'?

A Self-Organized C2 Structure?

A more speculative multiagent-based approach to command and
control is to see whether a decentralized variant of ISAAC possessing an
ability to evolve (whether via a genetic algorithm or some other means)
can be designed so that a command control structure emerges on its own\

If an ISAACA's chromosome encodes a sufficiently large volume of
"possibility space" to include the evolution of local communication, it is
entirely conceivable that — with the right fitness function guiding the
overall ecology of ISAACAs — the system will by itself find that the most
"efficient" use of the information available on the battlefield entails

231

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

effectively establishing a command and control structure. ISAAC may
also be able to point out alternative C2 structures that are more suitable
for dealing with given scenarios.

The "Human Element" of Combat Modeling

One of the most significant shortcomings of conventional
Lanchester-equation-based models of combat is their almost total
disregard for the human (i.e., psychological and/or decision-making
capability) factor. That this problem continues to plague most
conventional combat models, of course, is due not to a lack of effort on
the part of the modeling and simulation community, but to the fact that
the problem may be fundamentally unsolvable. The problem of
predicting what a given individual will do in a given situation, armed
with a certain set of true or untrue facts, is already a hard enough
problem. The problem of predicting what an individual will do in a
given situation when that individual must base his decision not just on
simple "facts" but also on what he thinks other individuals will do as a
result of his impending decision (and who themselves, in turn, base
their decisions on what they think others will choose to do, and so
on...), is essentially an impossible problem to solve, at least with the
mathematical tools currently available. And yet, this nested nonlinear
decision-making process is what arguably drives much of the behavior
on the real battlefield.

Most honest efforts to incorporate this all-important "human element"
into models of combat take a more-or-less traditional Artificial
Intelligence (AI) approach: they either rely on the decision-making
capability of expert systems or incorporate some form of fuzzy logic into
the overall decision-making process. The differences between
traditional AI approaches and the multiagent-based approach that
uniquely characterizes a complex systems theoretic approach to land
combat modeling were described earlier in this paper (see Agent-Based
Models in the Introduction). What the design philosophy of ISAAC, in
particular, brings to this problem is a natural context in which to
describe combat as consisting of many mutually interacting elementary
combatants, each reacting to local environmental stimuli and
information according to a quantifiable internal value system. ISAAC thus
offers a very natural complex systems theoretic arena in which to
examine what high-level behaviors might emerge from
adaptive-personality-driven local dynamics.

The ISAAC testbed consists essentially of a medium-sized "ecology" of
elementary adaptive combatants that simultaneously act as both
predator and prey. Each ISAACA acts according to a locally devised
strategy that is based in part on its local perception/knowledge, in part
on communicated nonlocal information, and in part on its forecast of
enemy action. The resulting "combat ecology" consists of "local actions
predicated on anticipated local actions predicated on..." and so on.

232

^reducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Now, while it would be foolish to suppose that any model (at least in the
foreseeable future) can model exactly the dynamics of any one human,
or that of a few humans working in concert, it is not hard to imagine
modeling the effects of interactions among many humans. The viability of
the whole of social science depends on this fact. And, as superbly
demonstrated by Epstein's and Axtell's agent-based Sugarscape model of
social systems [16], this supposition can go a long way indeed to
"explaining" many system-wide behaviors that were heretofore believed
to be "too complex" to understand. A useful analogy is the game of
darts: while one cannot know in advance where an individual dart will
hit a dartboard, one is reasonably well assured of attaining a Gaussian
"hit pattern" distribution after throwing a few hundred darts.

ISAAC'S fundamentally bottom-up, synthesist approach allows a land
combat analyst to explore a variety of "unconventional"
personality-driven questions:

• Which personalities/personality-mixes are more (or less)
conducive to generating coherent (or incoherent) collective
patterns of behavior?

• Given that a force must engage an enemy characterized by a
given personality, which personalities are best suited for
performing given missions?

• Which personalities tend to generate high (or low) entropy?

• For which regions in ISAACA's parameter-space are the
emergent patterns stable (or unstable)?

• Are there regions in ISAACA's parameter-space that are sensitive
to small perturbations (or chaotic), and might there be a way to
exploit this in combat (as in selectively driving an opponent into
these more sensitive regions of phase space)?

• What is the "optimal" platoon size for a given mission?

• many others...

Combat "State- Space"

ISAAC provides a natural framework within which it is possible to talk
about a combat "state-space." By this I mean a hypothetical
N-dimensional space — spanned by the parameters that define each
ISAACA and define the complete batdefield — within which the states of
the evolving battle trace out particular trajectories.

233

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

One of the ultimate goals in designing ISAAC is to provide a basic set of
tools to explore this state space. Once the behaviors in a sufficiently
large volume of this state-space are mapped out — fixed point behavior,
periodic states, and (as is likely, given the nonlinearity of the underlying
dynamics) chaotic behavior — the range of possible questions that one
can ask about the general behavior of this adaptive-agent-driven combat
"ecology" becomes enormous.

One could directly ask, for example, for the kinds of "personality mixes"
that are best-suited to deal with a known (or unknown) enemy. One
could explore tradeoffs between personality and weapon-mix, or the
value of having a "risk-taking" commander in charge of a group of
ISAACAs of a given personality class. One could ask about the kinds of
tactics and strategies that can be used, for a given mix of friendly and
enemy force types, to coerce the combat trajectory to swing more
toward a region of state-space that is more conducive for a "win," or
toward a region within which the enemy's state generally becomes less
stable.

In short, the act of mapping out the combat state-space represents a
step toward obtaining a greater intuitive sense about how all of the
different elements of combat fit together. The stand-alone
parameter-space mapper program, ISAAC_PM, provides a glimpse of
two-dimensional "slices" of this larger phase space (see Taking 2D
"Slices" of ISAAC'S Parameter Space).

Figure 85. Schematic representation of the combat phase space

es
B<
es
U
a >

i i

m(v Ml ''
\ /"/ ><'-V .'•"■" "■ "

\
 C

ha
ot

ic
.

Periodic T^ —►
Relative "Personality"

In the prologue to this report, artificial life is introduced as an attempt
to understand life-as-we-knoxv-it by exploring a larger context of
life-as-it-could-be. ISAAC is then introduced as a tentative first step toward
furthering our current understanding of the fundamental principles of

234

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

land warfare by providing an exploratory vehicle for examining a larger
context of combat-as-it-could-be. Among the important questions to ask in
this context is, "What regions in ISAAC'S phase-space are Lanchesterian-like?"

Miscellaneous Issues and Questions

We conclude this report by discussing a few miscellaneous issues:

•

•

Selfishness vs. Atruism

Self-Organized Criticality in Combat

Scaling Problem

Self-Organized Information ?

Selfishness vs Altruism

A fundamental problem in natural evolution and the evolution of social
cultures is to understand the relationship between selfishness and
altruism. On an individual level, the problem is to understand what
contexts drive individuals to act selfishly vice cooperatively. On a more
global level, there is the question of whether local selfishness - that is, a
set of purely selfishly motivated individual acts designed to maximize an
immediate payoff- can induce globally cooperative behaviors.

Axelrod and Hamilton [38], among others, has studied this problem by
applying game theory to the idealized Prisoner's Dilemma problem. In the
prisoner's dilemma problem, the fitness measure (or the "payoff
matrix" in the parlance of game-theory) is such that individuals
maximize their fitness collectively in the long term by cooperatively
ignoring the behavior that would maximize their fitness in the short
term. If the game is played once, individuals do best by not cooperating
(i.e., defecting). If the game is played repeatedly, however, individuals
do best by cooperating with one another. Axelrod and Hamilton have
been able to show that, in the context of Darwinian evolution, locally
selfish behavior can lead to global cooperation.

While this issue is philosophically intriguing in the abstract, it takes on
an added dimension in the context of military command and control.
Each level of a command and control hierarchy consists of entities that
are driven by locally selfish goals. On the lowest (i.e., individual
combatant) level such a purely "selfish" goal might simply be to stay
alive. In ISAAC, each ISAACA selfishly chooses the best move, where
"best" is interpreted purely locally. On a local command level, each
local commander selfishly wants to issue the best local movement
vectors to its subordinates. The global commander simply wants to "win
the battle." Entities on the various levels must not only assimilate and

235

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

react to information that is local to them, but must do so on time scales
that are appropriate for their level. Yet, if the command and control
structure is to be a viable one, all of these individually and locally selfish
acts must successfully combine to achieve a collective goal (or mission).
The system (i.e., the entire combat force) must therefore carefully weigh
short-term success (both perceived and real) and long-term strategy and
fitness.

Such a view of command and control immediately leads to some
interesting issues. For example, it is not immediately obvious that a
combat force will perform its mission well when all of its constituent
combatants are purely selfishly driven. Basic questions include ...

• When is it appropriate (from a purely dynamical systems point of view) to
sacrifice local fitness (i.e., to accept less-than-optimal local fitness) in
order to achieve a greater (i.e., higher level) measure of mission success"?

• What are the effects of dissent in command; that is, how is the overall
mission affected by having one local commander "at odds" with another
or with his global commander'?

• What are the general effects of homogeneity (and heterogeneity) of
ISAACA personalities?

Kauffman's Patches

In this context, one could also explore the applicability of Kauffman's
patch-optimization procedure [39]. The idea is to attack an optimization
problem (that consists of many interacting parts) by dividing it into a
quilt of nonoverlapping "patches" and optimizing "selfishly" within each
patch. Kauffman's work suggests that while patches may find local
"solutions" that are harmful to the whole, the overall process
nonetheless often succeeds in finding solutions that are "good" for the
entire system. Because command and control obviously involves
overlapping (vice Kauffman's non-overlapping) patches, it is clear that
this patch-optimization procedure - if it applies at all - must be somehow
amended. However, because the basic approach resonates so strongly
with the "locally selfish'-driven dynamics that underlies much of
command and control, it is certainly worth exploring.

Self-Organized Criticality in Combat

Recall that self-organized criticality (SOC) is the idea that dynamical
systems with many degrees of freedom naturally self-organize into a
critical state in which the same events that brought that critical state
into being can occur in all sizes, with the sizes being distributed
according to a power-law.33

33 See pages 101-107 of [1].

236

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

"Criticality" here refers to a concept borrowed from thermodynamics.
Thermodynamic systems generally get more ordered as the temperature
is lowered, with more and more structure emerging as cohesion wins
over thermal motion. Thermodynamic systems can exist in a variety of
phases - gas, liquid, solid, crystal, plasma, etc. - and are said to be
critical if poised at a phase transition. Many phase transitions have a
critical point associated with them, that separates one or more phases.
As a thermodynamic system approaches a critical point, large structural
fluctuations appear despite the fact the system is driven only by local
interactions. The disappearance of a characteristic length scale in a
system at its critical point, induced by these structural fluctuations, is a
characteristic feature of thermodynamic critical phenomena and is
universal in the sense that it is independent of the details of the system's
dynamics.

The kinds of structures SOC seeks to describe the underlying
mechanisms for look like equilibrium systems near critical points but
are not near equilibrium; instead, they continue interacting with their
environment, "tuning themselves" to a point at which critical-like
behavior appears. In contrast, thermodynamic phase transitions usually
take place under conditions of thermal equilibrium, where an external
control parameter such as temperature is used to tune the system into a
critical state.

Introduced in 1988, SOC is arguably the only existing holistic
mathematical theory of self-organization in complex systems, describing
the behavior of many real systems in physics, biology and economics. It
is also a universal theory in that it predicts that the global properties of
complex systems are independent of the microscopic details of their
structure, and is therefore consistent with the "the whole is greater than
the sum of its parts" approach to complex systems. Put in the simplest
possible terms, SOC asserts that complexity is criticality. That is to say, that
SOC is nature's way of driving everything towards a state of maximum
complexity.

In general, SOC appears to be prevalent in systems that have the
following properties:

• they have many degrees of freedom

• their parts undergo strong local interactions

• the number of parts is usually conserved

• they are driven by being slowly supplied with "energy" from an
exogenous source

• energy is rapidly dissipated within the system

237

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

In systems that have these properties, SOC itself is characterized by

• a self-organized drive towards the critical state

• intermittently triggered ("avalanche"-style) release of energy in
the critical state

• sensitivity to initial conditions (i.e., the trigger can be very
small)34

• the critical state is maintained without any external "tuning"

The critical state is an attractor for the dynamics: systems are inexorably
driven toward it for a wide variety of initial conditions. Frequently cited
examples of SOC include the distribution of earthquake sizes, the
magnitude of river flooding, and the distribution of solar flare x-ray
bursts, among others. Conway's Life-game CA-rule (see Appendix A),
which is a crude model of social interaction, appears to self-organize to
a critical state when driven by random mutations. Another vivid
example of SOC is the extinction of species in natural ecologies. In the
critical state, individual species interact to form a coherent whole,
poised in a state far out of equilibrium. Even the smallest disturbances
in the ecology can thus cause species to become extinct. Real data show
that there are typically many small extinction events and few large ones,
though the relationship does not quite follow the same linear power-law
as it does for avalanches.

Is war, as suggested by Bak and Chen [40], perhaps a self-organized
critical system? A simple way to test for self-organized criticality is to
look for the appearance of any characteristic power-law distributions in
a system's properties. Richardson [41] and Dockery and Woodcock [35]
have examined historical land combat attrition data and have both
reported the characteristic linear power-law scaling expected of
self-organized critical systems. Richardson examined the relationship
between the frequency of "deadly quarrels" versus fatalities per deadly
quarrel using data from wars ranging from 1820 to 1945. Dockery and
Woodcock used casualty data for military operations on the western
front after Normandy in World War II and found that the log of the
number of battles with casualties greater than a given number C also
scales linearly with log(C).

34 Sensitivity to initial conditions is usually a trademark of chaos in dynamical
systems. Unlike fully chaotic systems, however, in which nearby trajectories diverge
exponentially, the distance between two trajectories in systems undergoing SOC grows
at a much slower (power-law) rate. Systems undergoing SOC are therefore only
"weakly chaotic." There is an important difference between fully developed chaos and
weak chaos: fully developed chaotic systems have a characteristic time scale beyond
which it is impossible to make predictions about their behavior; no such time scale
exists for weakly chaotic systems, so that long-time predictions may be possible.

238

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

ISAAC'S data collection ability - particularly its cluster-counting routines
(see Data Collection) - can be used to search for evidence SOC-like
behavior, and for the combination of parameters (if any) that it appears
in ISAAC'S N-dimensional parameter space.

Scaling Problem

As has been emphasized repeatedly throughout this report, ISAAC is
designed to be nothing more than a "conceptual playground" in which
to explore certain fundamental issues of land warfare; or a tool by
which to take a baby step beyond simple metaphor in discussions
concerning the applicability of complex systems theory to land warfare.
ISAAC is certainly not intended to be used as a system-level model of
real combat. Nonetheless, there is a question that needs to be raised
about how ISAAC might - or might not - scale with force size. For example,
it is not immediately obvious that whatever patterns of behavior one
observes by running ISAAC using, say, 100 ISAACAs per side, to
represent some small-scale "conflict," necessarily scales to display the
same patterns (or warrant the same conclusions to be drawn from)
running ISAAC using, say, 1000 ISAACAs per side.

Self-Organized Information?

The statements "I understand this system" or "I understand how this
system behaves," are, unfortunately, very commonly misunderstood to
be synonymous with "I can model this system."

Here is (only a slightly exaggerated) form of the conventional wisdom's
"party-line:" Once I have intelligently put together a model or simulation of a
system, the "problem" of understanding how that system behaves is effectively
"solved." While I must still, of course, observe the behavior of the model, most of
the dirty work has already been accomplished. The true solution lies in modeling;
everything else is mop-up work!

In fact, this kind of reasoning is dangerously false. Suppose a physical
system's behavior is complicated enough to warrant the development of
a model (or models) in order for me to try to understand it. I will either
come up with a model that captures none of the behavior of the real
system — in which case, I have failed, and must start over — or I will
succeed in reproducing some (or most) of the real system's complicated
dynamics. In the second case, my model will have attained a degree of
"realism" that convinces me that it can be used as a surrogate system to
study the behavior of the real system. While one can argue that the act
of capturing the essence of the real system in a model deepens one's
understanding of that system purely as a result of having effectively
simplified the definition of the system, this act — by itself — does not
necessarily lead to better understanding. If the model's behavior is as
"complicated" as that of the system it purportedly captures the essence

239

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

of, one is still faced with the problem of how to understand the model's
behavior.

In [2]35, a computer model of natural evolution called Tierra was cited
as an example of a case where a model captures a real system's behavior
so well that the task of understanding its own behavior is far from trivial.
In Tierra's case, the unraveling of basic evolutionary phenomena such as
a rich diversity of species, symbiosis, parasitism, para-parasitism, and so
on, comes at a substantial price of having to do a considerable amount
of "field work" with the computer model and its outputs just to
understand what is "really happening" on a given run.

The point of this short discussion is to remind the reader that the
"problem" ISAAC is designed to address (if not by its current, skeletal,
version then by its future, more complete and mature, form) actually
consists of two separate issues:

• Issue #1: To Find a Proper Complex Systems Theoretic Model
Testbed. This issue involves the actual design of a
multiagent-based "toy-combat" ecology, which involves all kinds
of questions regarding adaptability, communication, evolution,
combat and so on. For example, how does an individual ISAAC
determine its strategy? What are the appropriate genomes? How
much memory is needed? How is a strategy defined? How do the
actions of low-level combatants differ from higher-level ones? ...
This first issue is "solved" when one provides an answer to the
question, "Has ISAAC captured the critical drivers that determine the
patterns of behavior of real combat?" This report discusses the first
tentative steps that have been taken toward addressing this
question.

• Issue #2: To Provide an Analyst's Toolbox for Exploring
Emergent Patterns of Behavior. The second issue involves the
understanding of what is actually going on within the
toy-batdefield once ISAAC begins evolving. The question here is,
"Now that (a "mature" version of) ISAAC is up and running —
orders are being sent down echelon via a realistic C2 structure,
combatants adapt and react according to appropriate local tactics
and both short- and long-term strategies, and so on — how do we
make sense of what ISAAC is really doing?' As indicated in the
discussion above, this important question can be asked of any
dynamical system, whether it is real or simulated. Apart from
applying the arsenal of tools and mathematical descriptions used
by nonlinear dynamics and complex systems theory to
understand behaviors of complex systems (see [1] and [2]), the

33 See page 35.

240

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

speculative suggestion made here involves using ISAAC itself to
address the problem (see discussion below).

I have already discussed using genetic algorithms as the engine driving
both individual learning and long-term tactics and strategy acquisition.
A third — and conceptually most far-reaching — use of genetic
algorithms involves using them to search through the (enormously
high-dimensional) space of all possible ways of filtering, assimilating, and
exploiting information to make command decisions.

Consider a future version of ISAAC whose dynamics include an
embedded command and control structure in which local and global
commanders base their decisions (in part) on a nested layering of
combat scenarios (see Nested ISAAC Dynamics). What is implicit in such a
model is that the local and global commanders have each found a way
(or a way has been defined for them) to characterize whatever
information is relevant for their command decision. Now, on the one
hand, it is entirely reasonable to "hard-wire" in hypothetical
characterizations, using the knowledge and experience of real
commanders. This is, in fact, what is most commonly done in
conventional AI-based warfare models. On the other hand, if the tools
and potential power of complex systems theory are to be used to their
fullest, ISAAC gives us a unique opportunity to inquire about what the
relevant bits of information really are.

Figure 86. A schematic representation of how genetic algorithms may
be used to find the "best" partitioning of the combat information-space

Fitness R

Partition Pi
D

D
D

D

■ D

The idea is use a genetic algorithm (or some other heuristic search
tool) to explore all possible ways in which a local commander can
characterize and use the information describing (what he believes is)
the overall state of the battle. By a characterization, I mean literally any
well-defined compression of whatever information goes into defining

241

Irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

the overall state of the system. Conventional measures include unit
formations, order-of-battle, distance to goal, friendly and enemy
attrition rates, and so on. Less conventional measures might include a
combat entropy, or be defined along the lines suggested by relativistic
information theory (see pages 75-79 in [2]), etc.

Call any such effective compression of relevant battlefield information a
partitioning (= P) of that combat state-space. Call the degree to which an
objective (or set of objectives) that drives a commander's
decision-making process has been attained the combat fitness function (=
F), so that a higher fitness equates to being "closer to" the ultimate
objective. Conceptually, a commander's task may be described as the
problem of identifying, assimilating and exploiting the most
appropriate P for attaining a given F. Figure 86 shows a schematic of
this basic idea.

For example, a local commander might "discover" the fact that one of
the most important pieces of information describing the state of the
overall batde — and which therefore plays a significant role in his
decision-making process — is information regarding the distribution of
adaptability on the battlefield. That is to say, information that does not
describe the state of the batde, per se (i.e., what forces are engaging the
enemy where), but the manner in which his forces are adapting to local
conditions. A local commander can then build on his experiential
knowledge of such wta-patterns by associating local combat conditions
with the right mix of adaptive ISAACAs to deal with those conditions.
Some conditions may warrant a force consisting of rather fixed, rigid
ISAACAs that are "optimized" for a particular kind of skirmish but are
otherwise relatively inflexible and nonadaptive. Other conditions might
require a more robust adaptive force, that can quickly assimilate
changes to their local environment and modify their response
accordingly, A genetic-algorithm-based approach to filtering all possible
forms of information may help the local (and global) commander to
identify and map the right local conditions to appropriate blends of
force personalities and types

242

Irreducible .Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Epilogue: On the use of simulations

"Although it is true that, in the 300 years since
Newton, most of theoretical science has been done
using the rigorous, analytical approach, the reason
for that is simply that that is the only kind of science
could be done ... The lack of computational power
meant that researchers could only answer questions
that had clean, elegant solutions ... It is only now
that we have the ability to do complex calculations
and simulations that we are discovering that a great
many systems seem to have an inherent complexity
that cannot be simplified ... After another 300
years, we will no doubt feel as comfortable using
computer simulations to analyze nature as scientists
today feel using Newton's laws of motion to
describe the trajectory of a falling stone."

- Glenn W. Rowe, Theoretical Models in Biology: The Origin of
Life, the Immune System, and the Brain (Clarendon Press)

243

Appendix A: A Brief Primer on Cellular Automata

Appendix A: A Brief Primer on Cellular
Automata

Cellular automata (CA) are a class of spatially and temporally discrete,
deterministic mathematical systems characterized by local interaction
and an inherendy parallel form of evolution. First introduced by von
Neumann in the early 1950s to act as simple models of biological
self-reproduction, CA are prototypical models for complex systems and
processes consisting of a large number of identical, simple, locally
interacting components. The study of these systems has generated great
interest over the years because of their ability to generate a rich
spectrum of very complex patterns of behavior out of sets of relatively
simple underlying rules. Moreover, they appear to capture many
essential features of complex self-organizing cooperative behavior
observed in real systems.

Although much of the theoretical work with CA has been confined to
mathematics and computer science, there have been numerous
applications to physics, biology, chemistry, biochemistry, and geology,
among other disciplines. Some specific examples of phenomena that
have been modeled by CA include fluid and chemical turbulence, plant
growth and the dendritic growth of crystals, ecological theory, DNA
evolution, the propagation of infectious diseases, urban social dynamics,
forest fires, and patterns of electrical activity in neural networks. CA
have also been used as discrete versions of partial differential equations
in one or more spatial variables.

The best sources of information on CA are conference proceedings and
collections of papers, such as the one's edited by Boccara [42], Gutowitz
[43], and Wolfram [44,45]. An excellent review of how CA can be used
to model physical systems is given by Toffoli and Margolus [46].

While there is an enormous variety of particular CA models - each
carefully tailored to fit the requirements of a specific system - most CA
models usually possesses these five generic characteristics:

• discrete lattice of cells: the system substrate consists of a one-, two- or
three-dimensional lattice of cells

• homogeneity: all cells are equivalent

• discrete states: each cell takes on one of a finite number of possible
discrete states

• local interactions: each cell interacts only with cells that are in its
local neighborhood

245

Appendix A: A Brief Primer on Cellular Automata

discrete dynamics: at each discrete unit time, each cell updates its
current state according to a transition rule taking into account
the states of cells in its neighborhood

Example #1: One-dimensional CA

For a one-dimensional CA, the value of the ith cell at time t - denoted
by Cj(t) - evolves in time according to a "rule" F that is a function of Cj(t)
and other cells that are within a range r (on the left and right) of q(t):

ct(t) = F[Ci_r(t -1), Ci_r+l (t-1),..., ci+r_x (t-1), ci+r{t - 1)].

Since each cell takes on one of k possible values - that is,
Cj e {0, l,...,k— 1}- the rule F is completely defined by specifying the
value assigned to each of the k2r+I possible (2r+l)-tuple configurations
for a given range-r neighborhood:

Ci-r(t-l) ... Ci(t-\) ... Cjtr(f-1) Cj(t)
0 0 0 F(0,0,...,0)
0 0 1 F(0,0,...,1)
* • *

k k k F(k,k,...,k)

Since F itself assigns any of k values to each of the k2r+1 possible
(2r+l)-tuples, the total number of possible rules is an exponentially
increasing function of both k and r. For the simplest case of nearest
neighbors (range r=l) and k=2 (c; = 0 or 1), for example, there are
28=256 possible rules. Increasing the number of values each cell can
take on to k=3 (but keeping the radius at r=l) increases the rule-space
sizetoS33-?»^1 .

Figure 87 shows the time evolution of a nearest-neighbor (radius r=l)
rule where c is equal to either 0 or 1. The row of eight boxes at the top
of the figure shows the explicit rule-set, where - for visual clarity - a box
has been arbitrarily colored "black" if the value c=l and "white" if c=0.
For each combination of three adjacent cells in generation 0, the rule F
assigns a particular value to the next-generation center cell of the
triplet. Beginning from an initial state (at time=0) consisting of the
value zero everywhere except the center site, that is assigned the value
1, F is applied synchronously at each successive time step to each cell of
the lattice. Each generation is represented by a row of cells and time is
oriented downwards. The first image shows a blowup of the first five
generations of the evolution. The second shows 300 generations. The
figure illustrates the fact that simple rules can generate considerable
complexity.

246

Appendix A: A Brief Primer on Cellular Automata

The space-time pattern generated from a single nonzero cell by this
particular rule has a number of interesting properties. For example, it
consists of a curious mixture of ordered behavior along the
left-hand-side and what appears to be disordered behavior along the
right-hand-side, separated by a corrugated boundary moving towards
the left at a "speed" of about 1/4 cells per "clock" tick. In fact, it can be
shown that, despite starting from an obviously non-random initial state
and evolving according to a fixed deterministic rule, the temporal
sequence of vertical values is completely random. Systems having the
ability to deterministically generate randomness from non-random
input are called autoplectic systems.

In general, the behavior of CA is strongly reminiscent of the kinds of
behavior observed in continuum dynamical systems, with simple rules
yielding steady-state behaviors consisting of fixed points or limit cycles,
and complex rules giving rise to behaviors that are analogous to
deterministic chaos. In fact, there is extensive empirical evidence
suggesting that patterns generated by all (one-dimensional) CA
evolving from disordered initial states fall into one of only four basic
behavioral classes:

• Class 1: evolution leads to a homogenous state, in which all cells
eventually attain the same value

• Class 2: evolution leads to either simple stable states or periodic
and separated structures

• Class 3: evolution leads to chaotic nonperiodic patterns

• Class 4: evolution leads to complex, localized propagating
structures

All CA within a given class yield qualitatively similar behavior. While the
behaviors of rules belonging to the first three rule classes bear a strong
resemblance to those observed in continuous systems - the
homogenous states of class 1 rules, for example, are analogous to
fixed-point attracting states in continuous systems, the asymptotically
periodic states of class 2 rules are analogous to continuous limit cycles
and the chaotic states of class 3 rules are analogous to strange attractors
- the more complicated localized structures emerging from class 4 rules
do not appear to have any obvious continuous analogues (although
such structures are well characterized as being soliton-like in their
appearance).

247

Appendix A: A Brief Primer on Cellular Automata

Figure 87. Example of a one-dimensional CA

■ " C=l I-! ' C=0 ^ generation 0

■ffM^IlP T T ^ ^
 S» I I

RuleF value assigned to
"generation 1 by F

5 generations

300 generations

Example #2: Conwayfs Life

"Its probable, given a large enough Life space, initially in a random state, that
after a long time, intelligent self-reproducing animals will emerge and populate
some parts of the space." -John H. Conway

Perhaps the most widely known CA is the game of Life, invented by
John H. Conway, and popularized extensively by Martin Gardner in his
"Mathematical Games" department in Scientific American in the early
1970s.

Life is "played" using the 9 nearest neighboring sites of any site on a
two-dimensional lattice, and consists of (1) seeding a lattice with some

248

Appendix A: A Brief Primer on Cellular Automata

pattern of "live" and "dead" cells, and (2) simultaneously (and
repeatedly) applying the following three rules to each cell of the lattice
at discrete time steps:

• Birth: replace a previously dead cell with a live one if exactly 3 of
its neighbors are alive

• Death: replace a previously live cell with a dead one if either (1)
the living cell has no more than one live neighbor (i.e., it dies of
isolation), or (2) the living cell has more than three neighbors
(i.e., it dies of overcrowding)

• Survival: retain living cells if they have either 2 or 3 neighbors

One of the most intriguing patterns in Life is an oscillatory propagating
pattern known as the "glider." Shown on the left-hand-side of figure 88,
it consists of 5 "live" cells and reproduces itself in a diagonally displaced
position once every four iterations. When the states of Life are
projected onto a screen in quick succession by a fast computer, the
glider gives the appearance of "walking" across the screen. The
propagation of this pseudo-stable structure can also be seen as a
self-organized emergent property of the system. The right-hand-side of
figure 88 shows a still-frame in the evolution of a pattern known as a
"glider-gun," which shoots-out a glider once every 30 iteration steps.

Figure 88. Glider patterns in Conway's Life

■ ■■■■
time=0 time=1 time=2 time=3 time=4

-V. gliders

<■«

glider-gun

What is remarkable about this very simple appearing rule is that one
can show that it is capable of universal computation. This means that
with a proper selection of initial conditions (i.e., the initial distribution
of "live" and "dead" cells), Life can be turned into a general purpose
computer. This fact fundamentally limits the overall predictability of
Life's behavior.

The well known Halting Theorem, for example, asserts that there
cannot exist a general algorithm for predicting when a computer will
halt its execution of a given program [47]. Given that Life is a universal
computer - so that the Halting Theorem applies - this means that one
cannot, in general, predict whether a particular starting configuration

249

Appendix A: A Brief Primer on Cellular Automata

of live and dead cells will eventually die out. No shortcut is possible,
even in principle. The best one can do is to sit back and patiently await
Life's own final outcome.

Put another way, this means that if you want to predict Life's long-term
behavior with another "model" or by using, say, a partial differential
equation, you are doomed to fail from the outset because its long-term
behavior is effectively unpredictable. Life - like all computationally
universal systems - defines the most efficient simulation of its own
behavior.

Example #3: Lattice Gases

Lattice gases are micro-level rule-based simulations of macro-level fluid
behavior. Lattice-gas models provide a powerful new tool in modeling
real fluid behavior. The idea is to reproduce the desired macroscopic
behavior of a fluid by modeling the underlying microscopic dynamics.

It can be shown that three basic ingredients are required to achieve an
emergence of a suitable macrodynamics out of a discrete microscopic
substrate: (1) local thermodynamic equilibrium, (2) conservation laws,
and (3) a "scale separation" between the levels at which the microscopic
dynamics takes place (among kinetic variables living on a micro-lattice)
and the collective motion itself appears (defined by hydrodynamical
variable on a macro-lattice). Another critical feature is the symmetry of
the underlying lattice.

Figure 89. Two-dimensional lattice-gas simulation of a fluid

time = 0 time =200 time =500

While there are many variants of the basic model, one can show that
there is a well-defined minimal set of rules that define a lattice-gas
system whose macroscopic behavior reproduces that predicted by the
Navier-Stokes equations36 exactly. In other words, there is critical
"threshold" of rule size and type that must be met before the
continuum fluid behavior is matched, and once that threshold is

36 The Navier-Stokes equations are a set of analytically intractable coupled nonlinear
partial differential equations describing fluid flow.

250

Appendix A: A Brief Primer on Cellular Automata

reached the efficacy of the rule-set is no longer appreciably altered by
additional rules respecting the required conservation laws and
symmetries.

Figure 89 shows a few snapshots of the evolution of a two-dimensional
lattice gas starting from an initial condition in which there is a tightly
packed region of particles at the center of the lattice. Notice how this
central region expands rapidly outward, and is very reminiscent of the
effect a dropped stone has on an initially stagnant pool of water. The
most striking feature is the circular sound wave, which is circular despite
the fact that the microscopic dynamics takes place on a square lattice.
The lattice gas "rules" thus force a symmetry that is not present in the
microscopic dynamics to emerge on the macro-scale.

Example #4: Collective Behavior in Higher Dimensions

Chate and Manneville37 have examined a wide variety of cellular
automata that live in dimensions four, five and higher. They found
many interesting rules that while being essentially featureless locally,
nonetheless show a remarkably ordered global behavior.

Figure 90, for example, plots the probability that a cell has value 1 at
time t+1 - labeled Pt+, - versus the probability that a cell had value 1 at
time t - labeled Pt - four a particular four dimensional cellular
automaton rule. The rule itself is unimportant, as there are many rules
that display essentially the same kind of behavior. The point is that
while the behavior of this rule is locally featureless - its space-time
diagram would look like static on a television screen - the global density
of cells with value 1 jumps around in quasi-periodic fashion. We
emphasize that this quasi-periodicity is a global property of the system,
and that no evidence for this kind of behavior is apparent in the local
dynamics.

Figure 90. Collective behavior of a four dimensional CA
1 ' 1 ' ■ ■ ■ i i | i

■"■

• - PJrffrak
•

0.4

■

*?■-

-

4
-

\

v- *i2r ■

0.2

^SHpr^
. i i i . . -

37 H. Chate and P. Manneville, Europhysc Letters, Volume 14, 1991, 409.

251

Appendix B: A Brief Primer on Genetic Algorithms

Appendix B: A Brief Primer on Genetic
Algorithms

Genetic algorithms (GAs) are a class of heuristic search methods and
computational models of adaptation and evolution based on natural
selection.

In nature, the search for beneficial adaptations to a continually
changing environment (i.e., evolution) is fostered by the cumulative
evolutionary knowledge that each species possesses of its forebears. This
knowledge, which is encoded in the chromosomes of each member of a
species, is passed from one generation to the next by a mating process
in which the chromosomes of "parents" produce "offspring"
chromosomes.

GAs mimic and exploit the genetic dynamics underlying natural
evolution to search for optimal solutions of general combinatorial
optimization problems. They have been applied to the Traveling
Salesman Problem, VLSI circuit layout, gas pipeline control, the
parametric design of aircraft, neural net architecture, models of
international security, and strategy formulation.

While their modern form is derived mainly from John Holland's work
in the 1960s [24], many key ideas such as using "selection of the fittest"
like population-based selection schemes and using binary strings as
computational analogs of biological chromosomes, actually date back to
the late 1950s. More recent work is discussed by Goldberg [25], Davis
[26] and Michalewicz [27] and in conference proceedings edited by
Forrest [28]. A comprehensive review of the current state-of-the-art in
genetic algorithms is given by Mitchell [29].

The basic idea behind GAs is very simple. Given a "problem" - which
can be as well-defined as maximizing a function over some specified
interval or as seemingly ill-defined and open-ended as evolution itself,
where there is no a-priori discernible or fixed function to either
maximize or minimize - GAs provide a mechanism by which the
solution space to that problem is searched for "good solutions." Possible
solutions are encoded as chromosomes (or, sometimes, as sets of
chromosomes), and the GA evolves one population of chromosomes
into another according to their fitness by using some combination
(and/ or variation) of the genetic operators of crossover and mutation.
A solution search space together with a fitness function is called a
fitness landscape. Eventually, after many generations, the population
will, in theory, be composed only of those chromosomes whose fitness
values are clustered around the global maximum of the fitness
landscape.

253

Appendix B: A Brief Primer on Genetic Algorithms

Genetic Operators

Each chromosome is visually defined to be a bit-string, where each bit
position (or "locus") takes on one of two possible values (or "alleles"),
and can be imagined as representing a single point in the "solution
space." The fitness of a chromosome effectively measures how "good" a
solution that chromosome represents to the given problem. Aside from
its intentional biological roots and flavoring, GAs can be thought of as
parallel equivalents of more conventional serial optimization
techniques: rather than testing one possible solution after another, or
moving from point to point in the solution phase-space, GAs move from
entire populations of points to new populations.

Figure 91. Schematic representation of the basic GA operators

Reproduction:

Crossover:

Mutation:

0 0 l 0 1 1 1 0

:üj m yi 0 fl'i 0 0 1

i 0 i 00 11 ::;l|

A
0 0 1 0 1 1 1 0

0 0 1 0 1 1 1 0

0 0 1 0 1 1 1 0

}-{
t

0 1 1 0 1 1 1 1

1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 Oil Hi 1

Figure 91 shows examples of the three basic genetic operations of
reproduction, crossover and mutation, as applied to a population of 8-bit
chromosomes. Reproduction makes a set of identical copies of a given
chromosome, where the number of copies depends on the
chromosome's fitness. The crossover operator exchanges subparts of
two chromosomes, where the position of the crossover is randomly
selected, and is thus a crude facsimile of biological sexual
recombination between two single-chromosome organisms. The
mutation operator randomly flips one or more bits in the chromosome,
where the bit positions are randomly chosen. The mutation rate is
usually chosen to be small.

While reproduction generally rewards high fitness, and crossover
generates new chromosomes whose parts, at least, come from
chromosomes with relatively high fitness (this does not guarantee, of
course, that the crossover-formed chromosomes will also have high
fitness; see below), mutation seems necessary to prevent the loss of
diversity at a given bit-position. For example, were it not for mutation, a

254

Appendix B: A Brief Primer on Genetic Algorithms

population might evolve to a state where the first bit-position of each
chromosome contains the value 1, with there being no chance of
reproduction or crossover ever replacing it with a 0.

The Basic GA Recipe

Although GAs, like CA, come in many different flavors, and are usually
fine-tuned in some way to reflect the nuances of a particular problem,
they are all more or less variations of the following basic steps:

Step 1: begin with a randomly generated population of
chromosome-encoded "solutions" to a given problem

Step 2: calculate the fitness of each chromosome, where fitness is
a measure of how well a member of the population performs at
solving the problem

Step 3: retain only the fittest members and discard the least fit
members

Step 4: generate a new population of chromosomes from the
remaining members of the old population by applying the
operations reproduction, crossover, and mutation (see figure 91)

Step 5: calculate the fitness of these new members of the
population, retain the fittest, discard the least fit, and re-iterate
the process

Example: Function Maximization

As a concrete example, suppose our problem is to maximize the fitness
function f(x) = x2, using six 6-bit chromosomes of the form
C=(cj,c2,...,c6), where each q is equal to either 0 or 1. C's fitness, f(C), is
determined by first converting its binary representation into a base-10
equivalent value and squaring: f(C)=(c,+2c2+22c3+23c4+24c5++25c6)

2.

The first step is to construct six random bit-strings representing the
initial population:

Cj = (101101) C2= (010110) C3= (111001)

C4= (101011) C5= (010001) C6= (011101)

These chromosomes have fitness values of 2025, 484, 3249, 1849, 289
and 841, respectively. The average fitness is 1456. By luck of the
fitness-scaled draw, where the number of copies of a given chromosome

255

Appendix B: A Brief Primer on Genetic Algorithms

is determined according to its fitness, scaled by the average fitness of
the entire population, three copies of C3 are made for the next
population (owing to its relatively high fitness), one copy each for
chromosomes C,, C4 and C6 and none for the remaining chromosomes.
These copies form the mating population.

Next, we randomly pair up the new chromosomes, and perform the
genetic crossover operation at randomly selected bit-positions -
chromosomes Cjand C4 exchange their last three bits, C2 and C6

exchange their last four bits, and C3 and C5 exchange their last bit:

C, exchange with C4 at bit 3 (101.101) x (111.001) (101001)

Cj exchange with C6 at bit 2 (11.1001) x (01.1101) (111101)

C3 exchange with C5 at bit 5 (11100.1) x (10101.1) (111001)

C4 exchange with Cj at bit 3 (111.001) x (101.101) (111101)

C5 exchange with C3 at bit 5 (10101.1) x (11100.1) (101011)

C6 exchange with C2 at bit 2 (01.1101) x (11.1001) (011001)

Finally, we mutate each bit of the resulting chromosomes with some
small probability - say pmutation=0.05. In our example we find that values
of the 5th bit in C4 and 6th bit in C5 are flipped. The resulting strings
make up our 2nd generation chromosome population. By chance, the
first loop through the algorithm has successfully turned up the most-fit
chromosome - C4=(llllll) —> f(C4) = 632 = 3969 - but in general the
entire procedure would have to be repeated many times to approach
the "desired" solution.

The table below summarizes the above steps:

Initial
Population

Initial
Fitness

Expected
Copies

Actual
Copies

Mating
Population

Crossover
Operation1

Mutation
Operation

New
Fitness

(101101) 2025 1.4 1 (101101) (134)->(101001) (101001) 1681

(010110) 484 0.3 0 (111001) (226)->(111101) (111101) 3481

(111001) 3249 2.2 3 (111001) (355)->(111001) (111001) 3249

(101011) 1849 1.3 1 (111001) (431)->(111101) (111111) 3969

(010001) 289 0.2 0 (101011) (553)->(101011) (101010) 1764

(011101) 841 0.6 1 (011101) (622)->(011001) (011001) 625
1 The crossover operator (xyz) means that chromosomes Cx and C2 exchange bits
at the Vth bit.

The Fitness Landscape

A solution search space, x, together with a fitness function, f(x), make
up what is called a fitness landscape. The term "landscape" comes from

256

Appendix B: A Brief Primer on Genetic Algorithms

visualizing a three-dimensional geographical landscape consisting of
heights h=f(x,y) of a two-dimensional location x=(x,y). Particular
problems, of course, may involve an arbitrary number of dimensions,
but it is still helpful to keep this simple image in mind. The term
"fitness" comes from Darwinian biology, and refers to the fitness of an
individual to survive as a function either of its phenotype (or higher-level
properties and/or behaviors) or its genotype (or lower-level genetic
code).

Biological fitness is generally very difficult to define since it is usually a
complicated (and changing!) function of the interactions between an
organism and other organisms and interactions between the organism
and its environment. In a biological context and/or biology-based
setting (such as in studies of artificial life), the fitness landscape is also
often referred to as an adaptive landscape. Other "fitness functions,"
which, depending on the particular problem, may be considerably
easier to define than their biological cousins, include energy and
free-energy landscapes from physics and chemistry, and cost (or
objective) functions from combinatorial optimization problems in
computer science.

Figure 92. Sample forms of fitness landscapes

(c)

As our simple geographical landscape metaphor might suggest, a variety
of fitness landscapes are possible, each with their own strengths and
weaknesses when it comes to "submitting" to a GA solution: completely
flat landscapes, landscapes with a single isolated minimum and/or
maximum, landscapes having several minima and/or maxima with
equal heights, or landscapes with many unequal and irregularly spaced
local minima and/or maxima.

Since GAs, like other combinatorial optimization schemes (such as
simulated annealing), depend essentially on their "hill-climbing" ability to
ascend (or descend) towards the desired global maximum (or
minimum), how successful the climb - and hence, the approach to the
solution - will be, depends on what the landscape looks like. What a

257

Appendix B: A Brief Primer on Genetic Algorithms

given landscape looks like, in turn, depends strongly on its metric; that
is, on the function d=d(x,x') that is used to measure the distance
between any two points x and x'. Since GAs tend to keep nearby bits
near each other, embedded correlations among subsets of a
chromosome's genes can sometimes be exploited to produce a "natural
ordering" for the given landscape.

Landscapes with a single smoothly increasing "bump,"' such as the one
shown in figure 92-a, for example, are usually amenable to any
systematic climb towards larger values. On the other hand, landscapes
with a single isolated maximum that sits on an otherwise even-leveled
surface may not be so easy to "solve," because at no point on the surface
is there a clue as to which direction to proceed in to move towards the
maximum. More "rugged" landscapes, such as those shown in figures
92-b and 92-c, with their multiple, and in the case of figure 92-c,
irregularly spaced and sized, local maxima, may present even greater
challenges to "hill-climbing" methods. An excellent review of
optimization on rugged landscapes is given by Palmer [48]. Kauffman
([49,50]) discusses the biological implications of rugged fitness
landscapes.

How Do GAs Work?

While GAs are very simple to describe and implement on a computer,
their behavior can be quite complex. There are a number of
fundamental questions concerning how GAs work, not all of which have
been completely answered. The first, and obvious, question is how do
they manage to work at all? Given the vast number of possible
genotypes of a size N "solution" (=2N), it is not immediately clear why
any finite search-strategy - be it serial, parallel, hill-climbing or whatever
- should ever consistently come close to the desired solution in a
reasonable time, particularly for large N. Since the efficacy of an
optimization scheme depends strongly on the fitness landscape, one
would also like to characterize the kinds of fitness landscapes that are
most amenable to a GA solution. It is also important to explore ways in
which GAs differ from more traditional hill-climbing methods like
gradient-ascent. Are all such methods, GAs included, equally adept at
"solving" the same sorts of problems? Or are different methods best
suited for specific kinds of problems? If so, how are these problems, and
presumably their fitness landscapes, different from one another? While
it would take us too far afield to explore these and other important
questions in any great depth, we will briefly discuss a notion that most
formal studies of the theory behind GAs begin with: the building-block
hypothesis.

258

Appendix B: A Brief Primer on Genetic Algorithms

The Building-Block Hypothesis

An heuristic explanation of why GA work - called the building-block
hypothesis [25, 24] - is based on the idea that good solutions tend to be
formed out of sets of good building-blocks (or Schemas). GAs discover
these solutions by assigning higher fitness-levels to - and therefore
tending to retain, over the course of successive generations - sets of
strings containing good Schemas.

By schema, we mean templates, or forms for particular kinds of strings.
For example, the schema S=(1****0), where * is a "wildcard" that
stands for either bit-value 0 or 1, represents the template for all length-6
chromosomes whose first bit ß_l=l and last bit ß_6=l. In this case, since
the schema contains one fixed bit and the distance between the outer
most fixed bits is 5, S is said to be an order-1 schema with defining length
5=5.

The above example, in which we used length-6 chromosomes to
maximize the function f(x)=x2, illustrates why schema can be thought of
as simple building-blocks of "fit" genes. In that example, any
chromosome of the form (1*****) js obviously more fit than (0*****),
and thus forms a basic building block out of which the best "solutions"
must be constructed.

Now, to be sure, not every possible subset of the solution-space can be
described as a schema. Simple counting shows that a length-N
chromosome can have 2N possible configurations, and therefore 2
possible subsets, but only 3N different Schemas. Nonetheless, it is a
central axiom of the building-block hypothesis that it is precisely the set
of Schemas that are effectively being processed by GAs.

The schema population can be estimated using a simple mean-field-like
argument. Let s represent a schema in a size-K population P(t) at time t,
and Z(P,t) instances of the schema at time t. Let f(s) be the fitness of
the string s, fg be the average fitness of instances of s at time t, and
f = K~ 2/ be the average fitness of the population. Then the expected
number of instances of s at time t+1, Z(P,t+l), is equal to

z{P,t+1) = X 42 =J-%eSM=f^z(p,t),
seS J J

since, by definition, /s = Z5S 5./(s)/Z(P, t) .

This basic difference equation - known as the Schema Theorem [24] -
expresses the fact that the sample representation of schemas whose
average fitness remains above average relative to the whole population
increases exponentially over time. As it stands, however, this equation

259

Appendix B: A Brief Primer on Genetic Algorithms

addresses only the reproduction operator, and ignores effects of both
crossover and mutation.

A lower bound on the overall effect of crossover, which can both create
and destroy instances of a given schema, can be estimated by calculating
the probability, pc(S), that crossover leaves a schema S unaltered. Let pc

be the probability that the crossover operation will be applied to a
string. Since a schema S will be destroyed by crossover if the operation
is applied anywhere within its defining length, the probability that S will
be destroyed is equal to pc*8(S)/(K-l), where 8(S) is the defining
length of S. Hence, the probability of survival ps=l-pc*8(S)/(K-l), and
the expression for Z(P,t+l) takes the updated form:

Z{P,t+\)>fj[\-pc^)z{P,t)
f

Finally, in order to also take into account the mutation operator, we
note that the probability that a schema S survives under mutation is
given by pM(S)=(l-pm)0(S>, where pm is the single-bit mutation probability
and 0(S) is the number of fixed-bits (i.e., the order) of S. With this we
can now express the Schema Theorem that (partially) respects the
operations of reproduction, crossover and mutation:

Z(Pj+l)>ff(l-pc^){(l-pmfW}z(P,t)

We conclude from this basic theorem that the sample representation of
low-order Schemas with above average fitness relative to the fitness of
the population increases exponentially over time. (The fact that we
have ignored possible crossover and/or mutation induced creations of
previously nonexisting instances of Schemas means only that the right
hand side of the above equation represents a lower bound; the
conclusion remains generally valid, as it stands.)

Dueling Parasites

We outline a potentially powerful generalization of the basic genetic
algorithm introduced by Hillis [6], which may have a natural
application to the modeling of combat.

Conventional genetic algorithms search for "solutions" to problems by
"evolving" large populations of approximate solutions, each candidate
solution represented by a chromosome. The genetic algorithm evolves
one population of chromosomes into another according to their fitness
using various genetic operators (such as crossover and mutation), and,
eventually, after many generations, the population comes to consist
only of the "most-fit" chromosomes.

260

Appendix B: A Brief Primer on Genetic Algorithms

This basic recipe is useful for finding near-optimal solutions for many
kinds of problems. One of the major difficulties that all solution schemes
for solving combinatorial optimization problems must contend with,
however, is the classical problem of the search space containing local
optima: once a search algorithm finds what it "thinks" is the global
optimal solution, it is generally difficult for it to find ways to not be
"locked into" the local optimum.

Hillis attacks this problem by exploiting host-parasite interactions
among two coupled genetic algorithm populations. To illustrate the
idea, consider his testbed system, which consists of finding a sorting
algorithm for elements of a set of fixed size that requires the smallest
number of comparisons and exchanges to be made among the
elements. The overall problem is to design an efficient sorting network,
which is a sorting algorithm in which the sequence of comparisons and
exchanges is made in a predetermined order. A candidate sorting
network, once defined (by a chromosome), is easy to test.

Now, Hillis' idea is to set up not one but two interacting genetic
algorithm populations, one population consisting of "solutions," or
sorting programs (the hosts), and the other consisting of "sorting
problems" (the parasites). Having the two populations interact
effectively sets up an "arms-race" between the two populations. While
the hosts are trying to find better and better ways to sort the problems,
the parasites are trying to make the hosts less and less adept at sorting
the problems by making the problems "harder."

The interaction between the two populations dynamically alters the
form of the fitness function. Just as the hosts reach the top of a fitness
"hill," the parasites deform the fitness landscape so that the hill
becomes a "valley" that the hosts are then forced to find ways to climb
out of and start looking for new peaks. When the population of
programs finally reaches a hill that the parasites cannot find a way to
turn into a valley, the combined efforts of the co-evolving hosts and
parasites has found a global optimum. Thus, the joint, coupled,
population pools are able to find better solutions quicker than the
evolutionary dynamics of populations consisting of sorting programs
alone.

The application to combat modeling is conceptually straightforward.
The idea is to apply genetic algorithms not to just one side of a conflict,
or to use genetic algorithms to find "optimal" combat tactics for fixed
sets of constraints and environments, but to use joint, coupled, pools of
populations, one side of which represents a set of tactics or strategies to
deal with specific scenarios, and the other side of which seeks ways to
alter the environment in ways that make it harder and harder for those
tactics or strategies to work.

261

Appendix C: Source Code for ISAAC

Appendix C: Source Code for ISAAC

Below is the ANSI C source code for version 1.8.4 of ISAAC_.CE (i.e.,
the Care Engine, see Table 4). Screen and graphics functions are those
defined in graph.h of Microsoft's Visual C/C++ compiler for DOS
(vl.52). Note that to run ISAAC using the parameter values appearing
in the header file ISAACh, ISAAC requires 8-16 MB of extended
memory and must thus be compiled using a DOS-extender such as
Pharlap's SDK 286 \DOS-Extender.

Header File

// Version number
#define ISAACVERSION "ISAAC / Version 1.8.4"

// maximum size of square battlefield
#define MAXFIELDSIZE151

// maximum ISAACA sensor range
#define MAXSENSORRANGE 10

// maximum possible interpoint distance
#define MAXINTERPOINTDIST (int)(1.414214 * MAXFIELDSIZE)

// maximum number of local commanders
#define MAXCOMMANDNUM 25

// maximum number of ISAACAs that can be under
// the command of a local commander
#define MAXUNDERCOMMAND100

// maximum number of ISAACs on either side
#define MAXISAACNUM 501

// maximum number of squads per side
#define MAXSQUADNUM11

// maximum number of enemy ISAACs that can be
// located in the neighborhood of an ISAACA
#define MAXNEIGHBORNUM 2*MAXISAACNUM+1

// maximum number of 'obstacles' in battlefield
#define TERRAINMAXNUM 25

// maximum size of clusters to consider for
// calculating distribution
#define MAXCLUSTERSIZE 2*MAXISAACNUM+1

263

Appendix C: Source Code for ISAAC

Structures
/ /**A*AAAAAA*A*iUAAAAA***AAAAA*AA****

//
// -statistics
// - red_GC_parameters
// -blue_GC_parameters
// - red_command_parameters
// - blue_command_parameters
// - batüe_parameters
// - red_parameters
// - blue_parameters

summary statistics and measures
red gloabl commander parameters
blue global commander parameters
red localcommander parameters
blue localcommander parameters
battlefield/ combat parameters
red ISAACA force parameters
blue ISAACA force parameters

//

struct statistics

{
int stat_flag;
int interpoint_flag;
int max_faterpoint_dist;
int max_G_dist;
float RG_dist[MAXINTERPOINTDIST];
float BG_dist[MAXINTEEPOINTDIST];
float RR_Jnterpoint[MAXINTERPOINTDIST]
float BB_interpoint[MAXINTERPOINTDIST];
float RB_interpoint[MAXINTERPOINTDIST]

float RG_dist_ave;
float BG_dist_ave;
float RR_interpoint_ave;
float BB_interpoint_ave;
float RB_interpoint_ave;
float RG_dist_adev;
float BG_dist_adev;
float RR_interpoint_adev;
float BB_interpoint_adev;
float RB_interpoint_adev;
float RG_dist_sdev;
float BG_dist_sdev;
float RR_interpoint_sdev;
float BB_interpoint_sdev;
float RB_interpoint_sdev;
float RG_dist_var;
float BG_dist_var;
float RR_interpoint_var;
float BB_interpoint_var;
float RB_interpoint_var;
int entropy_flag;
int block_xmin_l[17];
int block_xmax_l[17];
int block_ymin_l [17];
int block_ymax_l [17];
int block_xmin_2[65];
int block_xmax_2[65];
int block_ymin_2[65];
int bIock_ymax_2[65];
int block_xmin_3[257];
int block_xmax_3[257];
int block_ymin_3[257];
int block_ymax_3[257];
float red_entropy_l;
float red_entropy_2;
float red_entropy_3;
float blue_entropy_l;
float blue_entropy_2;
float blue_entropy_3;
float red_blue_entropy_l;
float red_blue_entropy_2;
float red_blue_entropy_3;
int cluster_l_flag;
int cluster_2_flag;
int number_of_clusters_l;
int number_of_clusters_2;

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA«AA»»»«****»AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

// =1 if statistics are to be computed, else 0
// =1 if interpoint-dist to be calculated, else 0
// maximum distance for which interpoint dist != 0
// maximum distance for which ISAACA-goal dist != 0
// distribution of red-blueflag distances
// distribution of blue-redflag distances
// distribution of red-red interpoint distances

, // distribution of blue-blue interpoint distances
|; // distribution of red-blue interpoint distances
// average of distribution of red-blueflag distances
// average of distribution of blue-redflag distances
// average of distribution of RR interpoint distances
// average of distribution of BB interpoint distances
// average of distribution of RB interpoint distances
// average deviation of dist of red-blueflag distances
// average deviation of dist of blue-redflag distances
// average deviation of dist of RR interpoint distances
// average deviation of dist of BB interpoint distances
// average deviation of dist of RB interpoint distances
// standard deviation of dist of red-blueflag distances
// standard deviation of dist of blue-redflag distances
// standard deviation of dist of RR interpoint distances
// standard deviation of dist of BB interpoint distances
// standard deviation of dist of RB interpoint distances
// variance of dist of red-blueflag distances
// variance of dist of blue-redflag distances
// variance of dist of RR interpoint distances
// variance of dist of BB interpoint distances
// variance of dist of RB interpoint distances
// =1 if spatial entropy is to be calculated, else =0
// ifh block x-min for 4x4 calc of entropy
// ith block x-max for 4x4 calc of entropy
// ith block y-min for 4x4 calc of entropy
//ith block y-max for 4x4 calc of entropy
//ith block x-min for 8x8 calc of entropy
//ith block x-max for 8x8 calc of entropy
//ith block y-min for 8x8 calc of entropy
//ith block y-max for 8x8 calc of entropy
// ith block x-min for 16x16 calc of entropy
//ith block x-max for 16x16 calc of entropy
//ith block y-min for 16x16 calc of entropy
//ith block y-max for 16x16 calc of entropy
// entropy measure of state using 4x4 array
// entropy measure of state using 8x8 array
// entropy measure of state using 16x16 array
// entropy measure of state using 4x4 array
// entropy measure of state using 8x8 array

' // entropy measure of state using 16x16 array
// entropy measure of state using 4x4 array
// entropy measure of state using 8x8 array
// entropy measure of state using 16x16 array
// =1 if D=l clusters are to be found
// =1 if D=2 clusters are to be found
// total number of clusters (using D=l)
// total number of clusters (using D=2)

264

Appendix C: Source Code for ISAAC

int clusters_l[MAXCLUSTERSIZE+l];
int clusters_2[MAXCLUSTERSIZE+l];
float cluster_l_ave;
float cluster_l_adev;
float cluster_l_sdev;
float cluster_l_var;
float cluster_2_ave;
float cluster_2_adev;
float cluster_2_sdev;
float cluster_2_var;
int neighborsjflag;
float red_in_red_ave[MAXSENSORRANGE+l];
float blue_in_red_ave[MAXSENSORRANGE+l];
float aU_in_red_ave[MAXSENSORRANGE+l];
float redJn_blue_ave[MAXSENSORRANGE+l];
float blue_in_blue_ave[MAXSENSORRANGE+l];
float all_in_blue_ave[MAXSENSORRANGE+l];
float red_in_red_adev[MAXSENSORRANGE+l];
float red_in_red_sdev[MAXSENSORRANGE+l];
float redJn_red_var[MAXSENSORRANGE+l];
float blue_in_red_adev[MAXSENSORRANGE+l];
float blue Jn_red_sdev[MAXSENSORRANGE+l];
float blue_in_red_var[MAXSENSORRANGE+l];
float aU_in_red_adev[MAXSENSORRANGE+l];
float aU_in_red_sdev[MAXSENSORRANGE+l];
float aU_in_red_var[MAXSENSORRANGE+l];
float redJnJblue_adev[MAXSENSORRANGE+l];
float red_in_blue_sdev[MAXSENSORRANGE+l];
float red_in_blue_var[MAXSENSORRANGE+l];
float blue_in_blue_adev[MAXSENSORRANGE+l];
float blue_in_blue_sdev[MAXSENSORRANGE+l];
float blue_in_blue_var[MAXSENSORRANGE+l];
float aUJn_blue_adev[MAXSENSORRANGE+l];
float aU_in_blue_sdev[MAXSENSORRANGE+l];
float aU_in_blue_var[MAXSENSORRANGE+l];
int center_mass_flag;
float red_CM_x;
float red_CM_y;
float blue_CM_x;
float blue_CM_y;
float total_CM_x;
float total_CM_y;
int goal_stat_flag;
float red_in_BG[6];
floatblue_in_RG[6];
int red_sensor_min;
int blue_sensor_min;
};

struct red_GC_parameters
(
intred_GC_flag;
float swath_area[MAXCOMMANDNUM] [17];
float swath_den_AB[MAXCOMMANDNUM] [17];
float swath_denJB[MAXCOMMANDNUM][17];
float red_GC_fear_index;
float red_gc_direction_wt[17];
int red_GC_direction_x[17];
int red_GC_direction_y[17];
int red_GC_goa!_x[MAXCOMMANDNUM];
int red_GC_goaI_y[MAXCOMMANDNUM];
int red_GC_help_x[MAXCOMMANDNUM];
int red_GC_help_y[MAXCOMMANDNUM];
float red_GC_w_alpha;
float red_GC_w_beta;
float red_GCJrac_R[3];
float red_GC_w_swath[4];
float red_GC_max_blue_factor;
int red_GC_help_radius;
float red_GC_health_ihresh;
float red_GC_rel_health_thresh;

// number of clusters of size i (using D=l)
// number of clusters of size i (using D=2)
// average cluster size
// average deviation of cluster distribution
// standard deviation of cluster distribution
// variance of cluster distribution
// average cluster size
// average deviation of cluster distribution
// standard deviation of cluster distribution
// variance of cluster distribution
// =1 if neighbor-routine is to be activated, else =0
// average number of red ISAACAS in red at dist D
// average number of blue ISAACAS in red at dist D
// average number of ISAACAS in red at dist D
// average number of red ISAACAS in blue at dist D
// average number of blue ISAACAS in blue at dist D
// average number of ISAACAS in blue at dist D
// average deviation of red ISAACAS in red at dist D
// standard deviation of red ISAACAS in red at dist D
// variance number of red ISAACAS in red at dist D
// average deviation of blue ISAACAS in red at dist D
// standard deviation of blue ISAACAS in red at dist D
// variance number of blue ISAACAS in red at dist D
// average deviation of ISAACAS in red at dist D
// standard deviation of ISAACAS in red at dist D
// variance number of ISAACAS in red at dist D
// average deviation of red ISAACAS in blue at dist D
// standard deviation of red ISAACAS in blue at dist D
// variance number of red ISAACAS in blue at dist D
// average deviation of blue ISAACAS in blue at dist D
// standard deviation of blue ISAACAS in blue at dist D
// variance number of blue ISAACAS in blue at dist D
// average deviation of ISAACAS in blue at dist D
// standard deviation of ISAACAS in blue at dist D
// variance number of ISAACAS in blue at dist D
// =1 if center-of-mass is to be computed
// x-coordinate of red's center-of-mass
// y-coordinate of red's center-of-mass
// x-coordinate of blue's center-of-mass
// y-coordinate of blue's center-of-mass
// x-coordinate of red and blue center-of-mass
// x-coordinate of red and blue center-of-mass
// =1 if goal-statistics to be calculated, else 0
// number of red ISAACAs near blue flag (radius=l,..,5)
// number of blue ISAACAs near red flag (radius=l,..,5)
// minimum sensor range among red squads
// minimum sensor range among blue squads

// =1 if red ISAACAs have a global commander, else =0
// contains 'swath' areas centered at (x,y) coor of LC
// contains 'swath' densities of alive blue ISAACAs
// contains 'swath' densities of injured blue ISAACAs
// 0 <= f <= 1 = fear index; 0=no fear; 1= max fear
// default weights for direction 'orders'(l-16) to LCs
// x-coordinate of possible GC goals for LCs
// y-coordinate of possible GC goals for LCs
// x-coordinate of the ith red ISAACAs GC goal for LCs
// y-coordinate of the ith red ISAACAs GC goal for LCs
// x-coordinate of the LC that the ith LC is to 'help'
// y-coordinate of the LC that the ith LC is to 'help'
// global red command weight for alive blue density
// global red command weight for injured blue density
// fractions of range in which to weigh swath dens
// swath weights to apply to the ith fractional radius
// max number of blues = max_factor*(# under command)
// defines area about LC in which the LC may seek help
// threshold health for an LC to help another
// threshold relative health for an LC to help another

265

Appendix C: Source Code for ISAAC

struct blue_GC_parameters

f
intblue_GC_flag;
float swath_area[MAXCOMMANDNUM][17];
float swath_den_AR[MAXCOMMANDNUM] [17];
float swath_den_IR[MAXCOMMANDNUM][17];
float blue_GC_fear_index;
float blue_gc_direction_wt[17];
int blue_GC_direction_x[17];
int blue_GC_direction_y[17];
int blue_GC_goal_x[MAXCOMMANDNUM];
int blue_GC_goal_y[MAXCOMMANDNUM];
int blue_GC_help_x[MAXCOMMANDNUM];
int blue_GC_help_y[MAXCOMMANDNUM];
float blue_GC_w_alpha;
float blue_GC_w_beta;
float blue_GC_frac_R[3];
float blue_GC_w_swath[4];
float blue_GC_max_red_factor;
int blue_GC_help_radius;
float blue_GC_health_thresh;
float blue_GC_rel_health_thrcsh;

struct red_command_parameters

{
short red_command_color;
int num_red_commanders;
int red_command_flag;
int red_command_patch;
int red_patch_choice_flag;
int red_command_radius[MAXCOMMANDNUM];
int red_command_R[MAXCOMMANDNUM];
int red_command[MAXISAACNUM];
int reds_commander[MAXISAACNUM];
intred_ISAACA_commander[MAXCOMMANDNUM];
int red_ISAACA_label[MAXISAACNUM];

// =1 if blue ISAACAs have a global commander, else =0
// contains 'swath' areas centered at (x,y) coor of LC
// contains 'swath' densities of alive red ISAACAs
// contains 'swath' densities of injured red ISAACAs
// 0 <= f <= 1 = fear index; 0=no fear; 1= max fear
// default weights for direction 'orders'(l-16) to LCs
// x-coordinate of possible GC goals for LCs
// y-coordinate of possible GC goals for LCs
// x-coor of the ith blue ISAACAs GC goal for LCs
// y-coor of the ith blue ISAACAs GC goal for LCs
// x-coordinate of the LC that the ith LC is to 'help'
// y-coordinate of the LC that the ith LC is to 'help'
// global blue command weight for alive red density
// global blue command weight for injured red density
// fractions of range in which to weigh swath dens
// swath weights to apply to the ith fractional radius
// max number of reds = max_factor*(# under command)
// defines area about LC in which the LC may seek help
// threshold health for an LC to help another
// threshold relative health for an LC to help another

// number of red local commanders
// =1 if red ISAACAs have local commanders, else =0
// =1 if 3-by-3 patch; =2 if 5-by-5
// if =0 then random patch choice, else min D to old
// command radius; area = 9 (2r+l)-by-(2r+l) patches
// command radius of 'entire' command swath
// =2 if = local commander; 1 if under command; else 0
// =0 if not under command; label of commander if yes
// label (i=..irednum) of ith ISAACA's local commander
// label (i=..inumcmders) of ith ISAACA; =0 if not cmd
// number of red ISAACAs under ith local command intred_num_under_command[MAXCOMMANDNUM];

int red_num_under_command_0[MAXCOMMANDNUM]; // # of red ISAACAs under ith local command (t=0)
int redJSAACA_under_command[MAXCOMMANDNUM] [MAXUNDERCOMMAND];

// label (i=l..irednum) of jth ISAACA under the ith local commander's command
float red_min_command_dist;
float red_w_to_commander_def;
float red_w_obey_command_def;
float red_w_to_commander;
float red_w_obey_command;
int red_command_goal_x[MAXCOMMANDNUM];
int red_command_goal_y[MAXCOMMANDNUM];
int red_prior_goalx[MAXCOMMANDNUM];
int red_prior_goaly[MAXCOMMANDNUM];
int red_local_goal_x[MAXISAACNUM];
intred_local_goaI_y[MAXISAACNUM];
float red_command_w_alpha[MAXCOMMANDNUM);
float red_command_w_beta[MAXCOMMANDNUM];
float red_command_w_delta[MAXCOMMANDNUM];

// minimum ISAACA distance from their local commanders
// red's relative weight to move towards commander
// red's relative weight to comply with command order
// red's relative weight to move towards commander
// red's relative weight to comply with command order
// x-coordinate for red ISAACAs local goal
// y-coordinate for red ISAACAs local goal
// x-coor of prior red 'command' patch goal
// y-coor of prior red 'command' patch goal
// x-coordinate of the ith red ISAACAs local goal
// y-coordinate of the ith red ISAACAs local goal
// local red command weight for (AR-AB)/(AR+IR)
// local red command weight for (AR-IB)/(AR+IR)
// local red command weight for (IR-AB)/(AR+IR)

float red_command_w_gamma[MAXCOMMANDNUM]; // local red command weight for (IR-IB)/(AR+IR)
float red_command_wlrdeffrMAXCOMMANDNUM];
float red_command_w2rdeff[MAXCOMMANDNUM];
float red_command_w3rdeff[MAXCOMMANDNUM]
float red_command_w4rdeff [MAXCOMMANDNUM],
float red_command_w5rdeff[MAXCOMMANDNUM],
float red_command_w6rdeff[MAXCOMMANDNUM],
int red_command_adv[MAXCOMMANDNUM];
int red_command_clus[MAXCOMMANDNUM];
int red_command_com[MAXCOMMANDNUM];
int red_command_srange[MAXCOMMANDNUM);
intred_command_advrange[MAXCOMMANDNUM];
int red_subordinate_color_flag;
float red_w_obey_GC_def[MAXCOMMANDNUM];
float red_w_obey_GC[MAXCOMMANDNUM];
float red_w_help_LC_def[MAXCOMMANDNUM];
float red_w_help_LC[MAXCOMMANDNUM];
float red_LC_health[MAXCOMMANDNUM];

// default weight for alive red —> alive red
// default weight for alive red —> alive blue
// default weight for alive red -> injured red
// default weight for alive red —> injured blue
// default weight for alive red —> red goal
// default weight for alive red -> blue goal
// local command red advance threshold
// local command red cluster threshold
// local command red combat threshold
// local command red sensor range
// range in which red # > threshold to advance
// paint subordinate ISAACAs different color if =1
// default weight for LC to obey global commander
// weight for LC to obey global commander
// weight for 'helping neighboring LCs (=l-w_goal)
// weight for 'helping neighboring LCs (=l-w_goal)
// the ith (i=l...numcmd) LCs health

266

Appendix C: Source Code for ISAAC

struct blue_command_parameters
{
short blue_command_color;
int num_blue_commanders;
int blue_command_flag;
int blue_command_patch;
int blue_patch_choice_flag;
int blue_command_radius[MAXCOMMANDNUM];
int blue_command_R[MAXCOMMANDNUM];
int blue_command[MAXISAACNUM];
int blues_commander[MAXISAACNUM];
intblue_ISAACA_commander[MAXCOMMANDNUM];
int blue_ISAACAJabel[MAXISAACNUM];

// number of blue local commanders
// =1 if blue ISAACAs have local commanders, else =0
// =1 if 3-by-3 patch; =2 if 5-by-5
// if =0 then random patch choice, else min D to old
// command radius; area = 9 (2r+l)-by-(2r+l) patches
// command radius of 'entire' command swath
// =2 if = local commander; 1 if under command; else 0
// =0 if not under command; label of commander if yes
// label (i=l..ibluenum) of ith's local commander
// label (i=..inumcmders) of ith ISAACA; =0 if not cmd

int blue_num_under_command[MAXCOMMANDNUM]; // number of blue ISAACAs under ith local command
int blue_num_under_command_0[MAXCOMMANDNUM];// # of blue ISAACAs under ith local command (t=0)
mtblueJSAACA_imder_command[MAXCOMMANDNUM][MAXUNDERCOMMAND];

// label (i=l..ibluenum) of jth ISAACA under the ith local commander's command
float blue_min_command_dist;
float blue_w_to_commander_def;
float blue_w_obey_command_def;
float blue_w_to_commander;
float blue_w_obey_command;
int blue_command_goal_x[MAXCOMMANDNUM];
int blue_command_goal_y [MAXCOMMANDNUM];
int blue_prior_goalx[MAXCOMMANDNUM];
int blue_prior_goaly[MAXCOMMANDNUM];
int blue Jocal_goal_x[MAXISAACNUM);
int blue_locaI_goal_y[MAXISAACNUM];

// minimum ISAACA distance from their local commanders
// blue's relative weight to move towards commander
// blue's relative weight to comply with command order
// blue's relative weight to move towards commander
// blue's relative weight to comply with command order
// x-coordinate for blue ISAACAs local goal
// y-coordinate for blue ISAACAs local goal
// x-coor of prior blue 'command' patch goal
// y-coor of prior blue 'command' patch goal
// x-coordinate of the ith blue ISAACAs local goal
// y-coordinate of the ith blue ISAACAs local goal

float blue_command_w_alpha[MAXCOMMANDNUM]; // local bluecommand weight for (AB-AR)/(AB+IB)
float blue_command_w_beta[MAXCOMMANDNUM]; // local bluecommand weight for (AB-IR)/(AB+IB)
float blue_command_w_delta[MAXCOMMANDNUM]; // local bluecommand weight for (IB-AR)/ (AB+IB)
float blue_command_w_gamma[MAXCOMMANDNUM];// local bluecommand weight for (IB-IR)/(AB+IB)
float blue_command_wlbdeff[MAXCOMMANDNUM]; // default weight for alive red -> alive red
float blue_command_w2bdeff[MAXCOMMANDNUM];
float blue_command_w3bdeff[MAXCOMMANDNUM];
float blue_command_w4bdeff[MAXCOMMANDNUM];
float blue_command_w5bdeff[MAXCOMMANDNUM];
float blue_command_w6bdeff[MAXCOMMANDNUM];
int blue_command_adv[MAXCOMMANDNUM];
int blue_command_clus[MAXCOMMANDNUM];
int blue_command_com[MAXCOMMANDNUM];
int blue_command_srange[MAXCOMMANDNUM];
int blue_command_advrange[MAXCOMMANDNUM];
int blue_subordinate_color_flag;
float blue_w_obey_GC_def[MAXCOMMANDNUM];
float blue_w_obey_GC[MAXCOMMANDNUM];
float blue_w_help_LC_def[MAXCOMMANDNUM];
float blue_w_help_LC[MAXCOMMANDNUM];
float blue_LC_health[MAXCOMMANDNUM];

};

struct batUe_parameters

(
short goalcolor;
short boxcolor;
int squad_color_flag;
int default_speed;
int ioutdata;
int ichoice;
int isize;
int initdist;
intibatÜebox_red_length_squad[MAXSQUADNUM];
intibatÜebox_red_width_squad[MAXSQUADNUM];
intibatÜebox_red_cen_x_squad[MAXSQUADNUM];
intibattlebox__red_cen_y_squad[MAXSQUADNUM];
intibattlebox_blue_length_squad[MAXSQUADNUM];
intibattlebox_blue_width_squad[MAXSQUADNUM];
intibatÜebox_blue_cen_x_squad[MAXSQUADNUM];
intibattlebox_blue_cen_y_squad[MAXSQUADNUM];
int itermcond;
int imove_selection;
int max_combat_flag;
int terrain_flag;

// default weight for alive red -> alive blue
// default weight for alive red -> injured red
// default weight for alive red -> injured blue
// default weight for alive red -> red goal
// default weight for alive red —> blue goal
// local command blue advance threshold
// local command blue cluster threshold
// local command blue combat threshold
// local command red sensor range
// range in which red # > threshold to advance
// paint subordinate ISAACAs different color if =1
// default weight for LC to obey global commander
// weight for LC to obey global commander
// weight for 'helping neighboring LCs (=l-w_goal)
// weight for 'helping neighboring LCs (=l-w_goal)
// the ith (i=l...numcmd) LCs health

//=1 if squads are color-highlighted, else =0
// =1 if run is FAST, =2 if run is SLOW
// output: l=screen only; 2=file only; 3=both
// run flag: l=run engine; 2=playback file
// user specified battlefield size
// initial force distribution flag
// length of box containing initial distribution
// width of box containing initial distribution
// x-coodinate of the center of red's initial box
// y-coodinate of the center of red's initial box
// length of box containing initial distribution
// width of box containing initial distribution
// x-coodinate of the center of blue's initial box
// y-coodinate of the center of blue's initial box
// termination condition flag (l=goal; 2=none)
// 1 = FIXED order; 2 = random order
// 1=# of sim engmnts lmtd; 0=no limit
// 1 = terrain to be used; 1 = no

267

Appendix C: Source Code for ISAAC

int terrain_num;
int terrain_size[TERRAINMAXNUM];
int terrain_center_x[TERRAINMAXNUM];
int terrain_center_y[TERRAINMAXNUM];
intioccupation[MAXFIELDSIZE]tMAXFIELDSIZE];
int reconstitution_flag;
int red_fratricide_flag;
int blue_fratricide_flag;
int red_£rat_rad;
int blue_frat_rad;
int red_frat_count;
int blue_frat_count;
float red_frat_prob;
float blue_frat_prob;

1;

struct red_parameters

f
int num_red_squads;
int num_per_red_squad[MAXSQUADNUM];
int squad[MAXISAACNUM];
int display_red_squad;
short redcolor;
short squadcolor;
int redgoalx;
int redgoaly;
int redxfMAXISAACNUM];
int redy[MAXISAACNUM];
int rseer[MAXISAACNUM];
int rseeb[MAXISAACNUM];
int rseercomm[MAXISAACNUM];
int rseebcomm[MAXISAACNUM];
int rstatus[MAXISAACNUM];
int ibinrfMAXISAACNUM];
float wlred[MAXISAACNUM];
float w2red[MAXISAACNUM];
float w3red[MAXISAACNUM];
float w4red[MAXISAACNUM];
float w5red[MAXISAACNUM];
float w6red[MAXISAACNUM];
int irednum;
int irsrange[MAXISAACNUM];
int iredfrange[MAXISAACNUM];
int irsrange_squad[MAXSQUADNUM];
int iredfrange_squad[MAXSQUADNUM];
float zshotbluebyreddef [MAXISAACNUM];
float zshotbluebyreddef_squad[MAXSQUADNUM];
int iperred;
float wlrdeff_a[MAXSQUADNUM];
float w2rdeff_a[MAXSQUADNUM];
float w3rdeff_a[MAXSQUADNUM];
float w4rdeff_a[MAXSQUADNUM];
float w5rdeff_a[MAXSQUADNUM];
float w6rdeff_a[MAXSQUADNUM];
float wlrdeff_i[MAXSQUADNUM];
float w2rdeffJ[MAXSQUADNUM];
float w3rdefH[MAXSQUADNUM];
float w4rdeff_i[MAXSQUADNUM];
float w5rdeff_i[MAXSQUADNUM];
float w6rdeff_i[MAXSQUADNUM];
float red_w_a_max[MAXISAACNUM];
float red_w_i_max[MAXISAACNUM];
float wlreddef_a[MAXISAACNUM];
float w2reddef_a[MAXISAACNUM];
float w3reddef_a[MAXISAACNUM];
float w4reddef_a[MAXISAACNUM];
float w5reddef_a[MAXISAACNUM];
float w6reddef_a[MAXISAACNUM];
float wlreddef_i[MAXISAACNUM];
float w2reddef_i[MAXISAACNUM];
float w3reddef_i[MAXISAACNyM);
float w4reddeH[MAXISAACNUM];
float w5reddef_i[MAXISAACNUM];
float w6reddef_i[MAXISAACNUM];

// number of terrain block
// radius of ith terrain block
// x-coordinate of the the ith block's center
// y-coordinate of the the ith block's center
// =2 if terrain, 1 if occupied, else 0
// if 0 then no reconstitution, else reconstitution on
// =1 if red ISAACAs can accidentally kill red ISAACAs, else 0
// =1 if blue ISAACAs can accidentally kill blue ISAACAs, else 0
// radius surrounding targeted blue within which reds can be killed
// radius surrounding targeted red within which blues can be killed
// cummulative total of red fratricide 'hits'
// cummulative total of blue fratricide 'hits'
// probability that red is accidentally shot by red
// probability that blue is accidentally shot by blue

// number of red squads
// number of ISAACAs in the ith red squad
// number of the squad to which the ith ISAACA belongs
// which red squad to show the parameters of on screen
// color code for alive red ISAACAs
// color code for highlighting individual squads
// x coordinate of red goal
// y coordinate of red goal
// x-coordinate of ith red ISAAC
// y-coordinate of ith red ISAAC
// =1 if red sees red and =0 otherwise
// =1 if red sees blue and =0 otherwise
// =1 if red sees red via COMM link
// =1 if red sees blue via COMM link
// =1 if alive, 1 if injured, 0 if dead
// number of blue isaacs in red isaac range
// active weight for red —> alive red
// active weight for red —> alive blue
// active weight for red —> injured red
// active weight for red —> injured blue
// active weight for red —> red goal
// active weight for red -> blue goal
// total number of red ISAACS
// red sensor range of ith ISAACA
// red fire range of ith ISAACA
// red sensor range of the ith squad
// red fire range of the ith squad
// probability that a red ISAAC shoots a blue
// probability that a red ISAAC shoots a blue
// input flag for initial personality type
// default weight for alive red -> alive red
// default weight for alive red —> alive blue
// default weight for alive red —> injured red
// default weight for alive red —> injured blue
// default weight for alive red —> red goal
// default weight for alive red —> blue goal
// default weight for injured red —> alive red
// default weight for injured red —> alive blue
// default weight for injured red —> injured red
// default weight for injured red —> injured blue
// default weight for injured red —> red goal
// default weight for injured red —> blue goal
// maximum absolute value of default red alive weights
// maximum absolute value of default red injrd weights
// default weight for alive red —> alive red
// default weight for alive red —> alive blue
// default weight for alive red —> injured red
// default weight for alive red —> injured blue
// default weight for alive red —> red goal
// default weight for alive red —> blue goal
// default weight for injrd red —> alive red
// default weight for injrd red —> alive blue
// default weight for injrd red —> injured red
// default weight for injrd red —> injured blue
// default weight for injrd red —> red goal
// default weight for injrd red -> blue goal

268

Appendix C: Source Code for ISAAC

int iredmovecont;
int iradv_a_squad[MAXSQUADNUM];
int iradv_i_squad[MAXSQUADNUM);
int iradvrange_squad[MAXSQUADNUM];
int kdus_a_squad[MAXSQUADNUM];
int irclusJ_squad[MAXSQUADNUM];
int ircom_a_squad[MAXSQUADNUM];
int ircom_i_squad[MAXSQUADNUM];
int iradv_a[MAXISAACNUM];
int iradv_i[MAXISAACNUM];
int iradvrange[MAXISAACNUM];
int irdus_a[MAXISAACNUM];
int irdus_i[MAXISAACNUM];
int ircom_a[MAXISAACNUM];
int ircom_i[MAXISAACNUM];
int iradvrange_min;
int iradvrange_max;
int iradv_a_müi;
int iradv_a_max;
int iradvJLmin;
int iradv_i_max;
int irdus_a_min;
int irclus_a_max;
int irclus_i_min;
int irclus_i_max;
int ircom_a_min;
int ircom_a_max;
int ircom_i_min;
int ircom_i_max;
float zrfromrmindist_a_squad[MAXSQUADNUM];
float zrfromrgmtadist_a_squad[MAXSQUADNUM];
float zbfromrmtadist_a_squad[MAXSQUADNUM];
float zrn-omnnindist_i_squad[MAXSQUADNUM];
float zrfromrgmindisU_squad[MAXSQUADNUM);
float zbfromnnindist_i_squad[MAXSQUADNUM);
float zrfromrmindist_a[MAXISAACNUM);
float zrfromrgmindist_a[MAXISAACNUM];
float zbfromnnindist_a[MAXISAACNUM];
float zrfromnnindist_i[MAXISAACNUM];
float zrn-omrgmindist_i[MAXISAACNUM];
float zbfrommundistj[MAXISAACNUM];
int iredmoverange_squad[MAXSQUADNUM];
int iredmoverange[MAXISAACNUM];
int red_max_eng_num[MAXISAACNUM];
int red_max_eng_num_squad[MAXSQUADNUM];
int red_COMM_flag;
int ircommrange;
float rcommweight;
float rcommweight_def;
float zrsscale[MAXISAACNUM];
int red_dock[MAXISAACNUM];
int red_max_r_time;
int defense_flag;
int alive_defense_squad[MAXSQUADNUM];
int mjrd_defense_squad[MAXSQUADNUM];
int alive_defense[MAXISAACNUM];
int injrd_defense[MAXISAACNUM];
int defense_clock[MAXISAACNUM];

struct blue_parameters

{
int num_blue_squads;
int num_per_blue_squad[MAXSQUADNUM];
int squad[MAXISAACNUM];
int display_blue_squad;
short bluecolor;
short squadcolor;
int bluegoalx;
int bluegoaly;
int bluex[MAXISAACNUM];
int bluey[MAXISAACNUM];
int bseer[MAXISAACNUM];
int bseeb[MAXISAACNUM];

// red movement constraint flag
// ith squad's red advance threshold
// ith squad's injured red advance threshold
// ith squad's range in which red # > threshold to advance
// ith squad's alive red cluster threshold
// ith squad's injured red cluster threshold
// ith squad's alive red combat threshold
//ith squad's injured red combat threshold
// alive red advance threshold
// injured red advance threshold
// range in which red # > threshold to advance
// alive red cluster threshold
// injured red cluster threshold
// alive red combat threshold
// injured red combat threshold
// min red advance threshold for random constraints
// max red advance threshold for random constraints
// min alive red advance threshold for ran constraints
// max alive red advance threshold for ran constraints
// min injrd red advance threshold for ran constraints
// max injrd red advance threshold for ran constraints
// min alive red cluster threshold for ran constraints
// max alive red cluster threshold for ran constraints
// min injrd red cluster threshold for ran constraints
// max injrd red cluster threshold for ran constraints
// min alive red combat threshold for ran constraints
// max alive red combat threshold for ran constraints
// min injrd red combat threshold for ran constraints
// max injrd red combat threshold for ran constraints
//ith squad's minimum distance of alive red from red
// ith squad's minimum distance of alive red from red goal
//ith squad's minimum distance of alive blue from red
//ith squad's minimum distance of injured red from red
//ith squad's minimum distance of injured red from red goal
//ith squad's minimum distance of injured blue from red
// minimum distance of alive red from red
// minimum distance of alive red from red goal
// minimum distance of alive blue from red
/ / minimum distance of injured red from red
// minimum distance of injured red from red goal
// minimum distance of injured blue from red
// max movement radius for alive reds
// max movement radius for alive reds
// max # of simul engagements by red
// max # of simul engagements by red
// if = 0 then COMMs NOT used for red, else yes
// red communications range
// red COMM weight (relative to w=l)
// red default COMM weight
// scale factor for multiplying red penalty
// internal red clock (for reconstitution)
// maximum number of 'ticks' before reconstitution
// =1 if defense "clock" (i.e. strength) to be used, else =0
// internal red clock (for defense) for ith squad
// internal red clock (for defense) for ith squad
// internal red clock (for defense)
// internal red clock (for defense)
// internal red clock (for defense)

// number of blue squads
// number of ISAACAs in the ith blue squad
// number of the squad to which the ith ISAACA belongs
// which blue squad to show the parameters of on screen
// color code for alive blues
// color code for highlighting individual squads
// x coordinate of blue goal
// y coordinate of blue goal
// x-coordinate of ith blue ISAAC
// y-coordinate of ith blue ISAAC
// =1 if blue sees red and =0 otherwise
// =1 if blue sees blue and =0 otherwise

269

Appendix C: Source Code for ISAAC

int bseercomm[MAXISAACNrUM];
int bseebcomm[MAXISAACNUM];
int bstatus[MAXISAACNUM];
int irinb[MAXISAACNUM];
float wlblue[MAXISAACNUM];
float w2blue[MAXISAACNUM];
float w3blue[MAXISAACNUM];
float w4blue[MAXISAACNUM];
float w5blue[MAXISAACNUM);
float w6blue[MAXISAACNUM];
int ibluenum;
int ibsrange[MAXISAACNUM];
int ibluefrange[MAXISAACNUM];
int ibsrange_squad[MAXSQUADNUM];
int ibluefrange_squad[MAXSQUADNUM];
float zshotredbybluedeflMAXISAACNUM];
float zshotredbybluedef_squad[MAXSQUADNUM];
int iperblue;
float wlbdeff_a[MAXSQUADNUM];
float w2bdeff_a[MAXSQUADNUM];
float w3bdeff_a[MAXSQUADNUM];
float w4bdeff_a[MAXSQUADNUM];
float w5bdeff_a[MAXSQUADNUM];
float w6bdeff_a[MAXSQUADNUM];
float wlbdeff_i[MAXSQUADNUM];
float w2bdeff_i[MAXSQUADNUM];
float w3bdeff_i[MAXSQUADNUM];
float w4bdeff_i[MAXSQUADNUM];
float w5bdeff_i[MAXSQUADNUM];
float w6bdeff_i[MAXSQUADNUM];
float blue_w_a_max[MAXISAACNUM];
float blue_w_i_max[MAXISAACNUM];
float wlbluedef_a[MAXISAACNUM];
float w2bluedef_a[MAXISAACNUM];
float w3bluedef_a[MAXISAACNUM];
float w4bluedef_a[MAXISAACNUM];
float w5bluedef_a[MAXISAACNUM];
float w6bluedef_a[MAXISAACNUM];
float wlbluedef_i[MAXISAACNUM);
float w2bluedef_i[MAXISAACNUM];
float w3bluede£_i[MAXISAACNUM];
float w4bluedef_i[MAXISAACNUM];
float w5bluedef_i[MAXISAACNUM];
float w6bluedef_i[MAXISAACNUM];
int ibluemovecont
int ibadv_a_squad[MAXSQUADNUM];
int ibadv_i_squad[MAXSQUADNUM];
int ibadvrange_squad[MAXSQUADNUM];
int ibclus_a_squad[MAXSQUADNUM);
int ibdusJ_squad|MAXSQUADNUM];
int ibcom_a_squad[MAXSQUADNUM];
int ibcom_i_squad(MAXSQUADNUM];
int ibadv_a[MAXISAACNUM];
int ibadv_i[MAXISAACNUM];
int ibadvrangefMAXISAACNUM];
int ibcIus_a[MAXISAACNUM];
int ibclus_i[MAXISAACNUM];
int ibcom_a[MAXISAACNUM];
int ibcom_i[MAXISAACNUM];
int ibadvrange_min;
int ibadvrange_max;
int ibadv_a_min;
int ibadv_a_max;
int ibadv_i_min;
int ibadv_i_max;
int ibclus_a_min;
int ibclus_a_max;
int ibclus_i_min;
int ibclus_i_max;
int ibcom_a_min;
int ibcom_a_max;
int ibcomJLmin;
int ibcom_i_max;
float zb£rombmindist_a_squad[MAXSQUADNUM];

// =1 if blue sees red via COMM link
// =1 if blue sees blue via COMM link
// =1 if alive, 1 if injured, 0 if dead
// number of red isaacs in blue isaac range
// active weight for blue —> alive blue
// active weight for blue —> alive red
// active weight for blue —> injured blue
// active weight for blue -> injured red
// active weight for blue -> blue goal
// active weight for blue -> red goal
// total number of blue ISAACs
// blue sensor range of ith ISAACA
// blue fire range of ith ISAACA
// red sensor range of the ith squad
// red fire range of the ith squad
// probability that a blue ISAAC shoots a red
// probability that a blue ISAAC shoots a red
// input flag for initial personality type
// default weight for alive blue —> alive blue
// default weight for alive blue -> alive red
// default weight for alive blue —> injured blue
// default weight for alive blue -> injured red
// default weight for alive blue -> blue goal
// default weight for alive blue -> red goal
// default weight for injured blue -> alive blue
// default weight for injured blue -> alive red
// default weight for injured blue -> injured blue
// default weight for injured blue —> injured red
// default weight for injured blue —> blue goal
// def weight vector for injured blue —> red goal
// max absolute value of default blue alive weights
// max absolute value of default blue injurd weights
// default weight for alive blue -> alive blue
// default weight for alive blue —> alive red
// default weight for alive blue —> injured blue
// default weight for alive blue —> injured red
// default weight for alive blue —> blue goal
// default weight for alive blue —> red goal
// default weight for injrd blue —> alive blue
// default weight for injrd blue —> alive red
// default weight for injrd blue —> injured blue
// default weight for injrd blue —> injured red
// default weight for injrd blue -> blue goal
// default weight for injrd blue -> red goal
// blue movement constraint flag
// ith squad's blue advance threshold
//ith squad's injured blue advance threshold
// ith squad's range in which blue # > threshold to advance
//ith squad's alive blue cluster threshold
//ith squad's injured blue cluster threshold
//ith squad's alive blue combat threshold
//ith squad's injured blue combat threshold
// alive blue advance threshold
// injured blue advance threshold
// range within which blue # > threshold to advance
// alive blue cluster threshold
// injured blue cluster threshold
// alive blue combat threshold
// injured blue combat threshold
// min blue advance threshold for random constraints
// max blue advance threshold for random constraints
// min alive blue advance threshold for ran constrnts
// max alive blue advance threshold for ran constmts
// min injrd blue advance threshold for ran constmts
// max injrd blue advance threshold for ran constrnts
// min alive blue cluster threshold for ran constrnts
// max alive blue cluster threshold for ran constmts
// min injrd blue cluster threshold for ran constrnts
// max injrd blue cluster threshold for ran constrnts
// min alive blue combat threshold for ran constrnts
// max alive blue combat threshold for ran constmts
// min injrd blue combat threshold for ran constrnts
// max injrd blue combat threshold for ran constmts
//ith squad's minimum distance of alive blue from blue

270

Appendix C: Source Code for ISAAC

float zbfrombgmmdist_a_squad[MAXSQUADNfUM];
float zifrombmmdist_a_squad[MAXSQUADNUM];
float zbfrombmmdist_i_squad[MAXSQUADNUM];
float zbfrombgmtadisU_squad[MAXSQUADNUM];
float zrfrombmindist_i_squad[MAXSQUADNUM];
float zbfrombmindist_a[MAXISAACNUM];
float zbfrombgirandist_a[MAXISAACNUM];
float zrfrombmtadist_a[MAXISAACNUM];
float zbfrombmtadist_i[MAXISAACNUM];
float zbfrombgmmdist_i[MAXISAACNUM];
float zrfrombmindist_i[MAXISAACNUM];
int ibluemoverange_squad[MAXSQUADNUM);
int ibluemoverange[MAXISAACNUM];
int blue_max_eng_num[MAXISAACNUM];
int blue_max_eng_num_squad[MAXSQUADNUM];
int blue_COMM_flag;
int ibcommrange;
float bcommweight;
float bcommweight_def;
float zbsscale[MAXISAACNUM];
int blue_clock[MAXISAACNUM];
int blue_max_r_time;
int defense_flag;
int alive_defense_squad[MAXSQUADNUM];
int injrd_defense_squad[MAXSQUADNUM];
int anve_defense[MAXISAACNUM];
int injrd_defense[MAXISAACNUM];
int defense_clock[MAXISAACNUM];
};

// ith squad's minimum distance of alive blue from blue goal
// ith squad's minimum distance of alive red from blue
//ith squad's rriinimum distance of injured blue from blue
//ith squad's minimum distance of injured blue from blue goal
//ith squad's minimum distance of injured red from blue
// minimum distance of alive blue from blue
// minimum distance of alive blue from blue goal
// minimum distance of alive red from blue
// minimum distance of injured blue from blue
// minimum distance of injured blue from blue goal
// minimum distance of injured red from blue
// max movement radius for alive blues
// max movement radius for alive blues
// max # of simul engagements by blue
// max # of simul engagements by blue
// if = 0 then COMMs NOT used for blue, else yes
// blue communications range
// blue COMM weight (relative to w=l)
// blue default COMM weight
// scale factor for multiplying blue penalty
// internal blue clock (for reconstitution)
// maximum number of 'ticks' before reconstitution
// =1 if defense "clock" (i.e. strength) to be used, else =0
// internal blue clock (for defense) for ith squad
// internal blue clock (for defense) for ith squad
// internal blue clock (for defense)
// internal blue clock (for defense)
// internal blue clock (for defense)

271

Appendix C: Source Code for ISAAC

Main Module

//
//
//
//
//
//
//
//
//
//
//
//
//
in

a*
a
a

a

ISAAC.C - Irreducible Semi-Autonomous Adaptive Combatant

Core engine (MS Visual C++ vl.52)
Version 1.8.4

Andy Ilachinski
Center for Naval Analyses
4401 Ford Avenue
Alexandria, VA 22302
(703) 824-2045
ilachina@cna.org

ISAAC_A.C contains mainO function

All other function definitions appear in auxiliary files:

FILE

ISAAC_B1. C INITIALIZE_FIELD
ISAAC_B2.C SCREENDATA

ISAAC_C.C
ISAAC_.CC
ISAAC_.CC
ISAAC_.CC
ISAAC_.CC
ISAAC_.CC

ISAAC_D.C
ISAAC_D.C
ISAAC_D.C
ISAAC_D.C
ISAAC_D.C
ISAAC_D.C

ISAAC_E1. C
ISAAC_E1. C
ISAAC_E2.C
ISAAC_E3. C

ISAAC_F.C
ISAAC_F.C

ISAAC_G.C
ISAAC_G.C

ISAAC_H1.C
ISAAC.H1. C
ISAAC_H2 . C
ISAAC_H2 . C

ISAAC_I.C
ISAAC_I.C

ISAAC_J.C
ISAACJ.C

ISAAC_K1. C
ISAAC_K2.C

ADAPT_RED_ISAACA_WEIGHTS
ADAPT_BLUE_ISAACA_WEIGHTS
ADAPT_RED_LC_WEIGHTS
ADAPT_BLUE_LC_WEIGHTS
ADAPT_RED_GC_WEIGHTS
ADAPT_BLUE_GC_WEIGHTS

RED_SENSOR
BLUE_SENSOR
RED_COMMAND_SENSOR
BLUE_COMMAND_SENSOR
BLUEINRED
REDINBLUE

COMPUTEREDPENALTY
COMPUTEBLÜEPENALTY
COMPUTEREDPENALTY_GC
COMPUTEBLUEPENALTY_GC

COMPUTEREDPENALTY_COMM
CCOMPuTEBLUEPENALTY_COMM

MOVERED
MOVEBLÜE

RED_COMM_INFO
BLUE_COMM_INFO
RED_PROMOTIONS
BLUE_PROMOTTONS

COMBAT
COMBAT_2

RED_LOCAL_COMMAND_l
BLUE_LOCAL_COMMAND_l

RED_LOCAL_COMMAND_2
BLUE_LOCAL__COMMAND_2

ISAAC_L.C UPDATEPICTURE

ISAAC_M1.C
ISAAC_M2.C
ISAAC__M3.C
ISAAC_M3 .
ISAAC_M3 .
ISAAC_M3 .
ISAAC_M3 .
ISAAC_M3 .
ISAAC_M3 .
ISAAC_M3.C
ISAAC_M3.C
ISAAC_M3.C
ISAAC_M3.C

ISAAC_N1.C
ISAAC_N2.C

ISAAC_O.C

ISAAC_P.C

INPUT.
INPUT.
WRITE.
WRITE.
WRITE.
WRITE.
WRITE.
WRITE.
WRITE.
WRITE.
WRITE.
WRITE.
WRITE.

.FILE_DATA

.SCREEN_DATA

.DATA_FILE
OUT_FILE
.INTERPOINT
1_CLUSTER
.2_CLUSTER
.RR_NEIGHBORS
.BB_NEIGHBORS
.RB_NEIGHBORS
.BR_NEIGHBORS
.AR_NEIGHBORS
,AB_NEIGHBORS

PROMPT_SCREEN
(Miscellaneous functions)

PLAYBACK

ABS_FLOAT

DESCRIPTION

initialize battlefield parameters
dump data to screen

adapts red ISAACA weights
adapts blue ISAACA weight
adapts red local commander weights
adapts blue local commander weights
adapts red global commander weights
adapts blue global commander weights

determines what the ith red ISAACA sees within sensor
determines what the ith blue ISAACA sees within sensor
determines what the ith red local commander sees
determines what the ith blue local commander sees
determines number of blues within red sensor
determines number of reds within blue sensor

calculates penalty for each red move possibility
calculates penalty for each blue move possibility
calculates penalty for red assuming GC flag on
calculates penalty for blue assuming GC flag on

calculate red-move penalty assuming COMM is * on'
calculate blue-move penalty assuming COMM is ' on'

moves all red ISAACAs (updates lattice positions)
moves all blue ISAACAs (updates lattice positions)

determine what ISAACAs are within red's COMM range
determine what ISAACAs are within blue's COMM range
adjudicate red local commander promotions
adjudicate blue local commander promotions

adjudicates combat (assuming ALL enagements)
adjudicates combat (assuming enagement threshold set)

red local commanders set local goals for 3-by-3 patch
blue local commanders set local goals for 3-by-3 patch

red local commanders set local goals for 5-by-5 patch
blue local commanders set local goals for 5-by-5 patch

update graphics screen ith new red and blue positions

read input from data file
input data from screen prompts
Write current parameter values to data file
Open 'play-back' (*.out) file
Write interpoint-distances to statistics file
Write cluster distributions to statistics file (using D=l
Write cluster distributions to statistics file (using D=2
Write red-in-red distirbutions to statistics file
Write blue-in-blue distirbutions to statistics file
Write red-in-blue distirbutions to statistics file
Write blue-in-red distirbutions to statistics file
Write all-in-red distirbutions to statistics file
Write all-in-blue distirbutions to statistics file

display choices for 'on-the-fly' parameter changes
menu structures, etc. for PROMPT_SCREEN

"plays-back" previously recorded //.out files

returns absolute value of a float

272

Appendix C: Source Code for ISAAC

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

ISAAC_P.C
ISAAC_P.C
ISAAC_P.C
ISAAC_P.C

ISAAC_Q.C

ISAAC_Q.C

GETRANDOM
RAN1
SIGNUM
NOMEM

RED_SWATH_AREA

BLUE„SWATH_AREA

ISAAC_R1-C RED_SWATH„DENSITY

ISAAC_R2.C BLUE_SWATH_DENSITY

ISAAC_S1.C
ISAAC_S2.C

ISAAC_T1.C
ISAAC_T2.C
ISAAC_T3.C
ISAAC_T3.C
ISAACJT4.C
ISAACJT5.C
ISAACJT5.C
ISAAC_T5.C

RED_GLOBAL_COMMAND
BLUE_GLOBAL„COMMAND

INTERPOINT_DIST
SPATIAL_ENTROPY
CLUSTER_1
MOMENT
CLUSTER_2
NEIGHBORS
CENTER__MASS
GOAL_STATS

get a random number between a and b
uniform random generator from 'Numerical Recipes*
sign (+1,-1, or 0) of a float
returns 'insufficient memory to run' message and exits

calculates the area of each of 16 'swaths* centered
at the current (x,y) coordinates of red local commander
calculates the area of each of 16 'swaths' centered
at the current (x,y) coordinates of blue local commander

calculates the density of blue ISAACAs in each of 16
swath' centered at the current (x,y) coordinates of
red local commander
calculates the area of of red ISAACAs in each of 16
swaths centered at the current (x,y) coordinates of
blue local commander

red global commanders set 'direction* goals for LCs
blue global commanders set 'direction' goals for LCs

calculates R-R, B-B, R-B and R,B-goal distance dists
computes spatial entropy for 4x4, 8x8 and 16x16 blocks
returns the distribution of clusters (D=l) and average size
returns mean ave, ave deviation and standard deviation
returns the distribution of clusters (D=2) and average size
returns the average number of ISAACAs at distance D
returns the center-of-mass of red, blue and total forces
returns the number of ISAACAs near enemy flag

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<isaacl8.h>
<istrcl8.h>
<string.h>
<float.h>
<math.h>
<stdlib.h>
<stdio.h>
<conio.h>
<time.h>
<graph.h>
<io.h>
<malloc.h>

// contains MAXIMUM sizes for battlefield and ISAACA arrays
// contains COMMAND, BATTLE, RED and BLUE parameter structures

//*
//
//
//
//*

Allocate Memory for Structures

struct red_GC_parameters red_GC;
struct blue_GC_parameters blue_GC;
struct red_command_parameters red_command;
struct blue_command_parameters blue_command;
struct battle_parameters battle;
struct red_parameters red;
struct blue_parameters blue;
struct statistics stats;

//
//
//
//
//

void

FUNCTION PROTOTYPES

INPUT_FILE_DATA(unsigned char filename[30], struct statistics *ss, struct red_GC_parameters *rgcp,
struct blue_GC_parameters *bgcp, struct red_command_parameters *rcomp,
struct blue_command_parameters *bcomp, struct battle_parameters *batp,
struct red_parameters *redp, struct blue„parameters *bluep, long *idum) ,-

void INPUT_SCREEN_DATA(struct red_GC_parameters *rgcp, struct blue_GC_parameters *bgcp,
struct red_command_parameters *rcomp, struct blue_command_parameters *bcomp,
struct battle_parameters *batp, struct red_parameters *redp,
struct blue_parameters *bluep, long *idum, int *iternum);

void WRITE_DATA_FILE(FILE *outdatafile, struct statistics *s, struct red_GC_parameters *rgcp,
struct blue_GC_parameters *bgcp, struct red_command_parameters *rcomp,
struct blue_command_parameters *bcomp, struct battle_parameters *batp,
struct red_parameters *redp, struct blue_parameters *bluep);

void WRITE_OUT_FILE{FILE »outdatafile, int red_GC„flag, int blue_GC_flag,
struct red„command_parameters *rcomp, struct blue_command_parameters
struct battle_parameters *batp, struct red_parameters *redp,
struct blue_parameters *bluep);

'bcomp.

void INITIALIZE_FIELD{struct statistics *s, struct red_GC_parameters Tgcp,
struct blue_GC_parameters *bgcp, struct red_command_parameters *rcomp,
struct blue„command_parameters *bcomp, struct battle_parameters *batp,
struct red_parameters *redp, struct blue_parameters *bluep,
int iflag[5][5], long *idum);

void SCREENDATA(int itime, int idata, unsigned char filename[30], struct red_command_parameters *rcomp,
struct blue_command_parameters *bcomp, struct battle_parameters *batp,
struct red_parameters *redp, struct blue_parameters *bluep);

void ADAPT_RED_ISAACA__WEIGHTS(int i, int irinrnum, int ibinrnum, int iradvnum,
struct red„command_parameters *rcomp, struct red„parameters 'redpj;

273

Appendix C: Source Code for ISAAC

void ADAPT_BLUE_ISAACA_WEIGHTS(int i, int ibinbnum, int irinbnum, int ibadvnum,
struct blue_command_parameters *bcomp, struct blue_parameters »bluep);

void ADAPT_RED_LC_WEIGHTS(int i, int irinrnum, int ibinrnum, int iradvnum,
struct red_command_parameters »rcomp,
struct red_parameters *redp);

void ADAPT_BLUE_LC_WEIGHTS(int i, int ibinbnum, int irinbnum, int ibadvnum,
struct 'blue_command__parameters »bcomp,
struct blue_parameters »bluep) ;

void ADAPT_RED_GC_WEIGHTS(int i, int irinrnum, int ibinrnum, int iradvnum,
struct red_GC_parameters *rgcp,
struct red_command_parameters »rcomp,
struct red_parameters »redp) ,-

void ADAPT_BLUE_GC_WEIGHTS(int i, int irinrnum, int ibinrnum, int iradvnum,
struct blue_GC_parameters »bgcp,
struct blue_command_parameters *bcomp,
struct blue_parameters *bluep) ,-

void ADAPTBLUEWEIGHTStint i, int ibinbnum, int irinbnum, int ibadvnum,
struct blue_command_parameters »bcomp, struct blue_parameters »bluep);

void RED_COMM_INFO(int i, struct red_parameters »redp, struct blue_parameters »bluep);

void BLUE_COMM_INFO(int i, struct red_parameters »redp, struct blue_parameters »bluep);

void MOVERED (int i, int imrr, int imove, struct battle_parameters *batp,
struct red_parameters *redp) ,-

void MOVEBLUE (int i, int imbr, int imove, struct battle_parameters *batp,
struct blue_parameters *bluepj;

void RED_SENSOR(int *irinrnum, int *ibinrnum, int *iradvnum, int *ibinrinjnum,
int *irinrinjnum,.int i, struct red_parameters *redp, struct blue_parameters *bluep,
int »»ilblbinr) ,-

void RED_COMMAND__SENSOR (int »irinrnum, int *ibinrnum, int *iradvnum, int *ibinrinjnum,
int »irinrinjnum, int i, struct red_command__parameters »rcomp,
struct red_parameters »redp, struct blue_parameters *bluep, int »»ilblbinr),-

int BLUEINRED{ int i, struct red_parameters *redp, struct blue_parameters *bluep,
int **ilblbinr);

void BLUE_SENSOR{int *ibinbnum, int »irinbnum, int »ibadvnum, int »irinbinjnum,
int »ibinbinjnum, int i, struct red_parameters »redp,
struct blue_parameters »bluep, int **ilblrinb);

void BLUE„COMMAND_SENSOR{int »ibinbnum, int »irinbnum, int »ibadvnum, int »irinbinjnum,
int »ibinbinjnum, int i, struct blue_command_parameters »bcomp,
struct red_parameters »redp, struct blue_parameters »bluep, int »»ilblrinb);

int REDINBLUE(int i, struct red_parameters »redp, struct blue_parameters »bluep,
int »»ilblrinb);

float COMPUTEREDPENALTY(int i, int imrr, int »igoalflag, int irinrinjnum, int ibinrinjnum,
float zmin, int iflagt5][5], float z[5][5], struct red_command_parameters »rcomp
struct blue_command_parameters »bcomp, struct battle_parameters »batp,
struct red_parameters »redp, struct blue_parameters »bluep);

float COMPUTEREDPENALTY_COMM(int i, int imrr, int »igoalflag, int irinrinjnum,
int ibinrinjnum, float zmin, int iflag[5][5], float z[5][5],
struct red_command_parameters »rcomp, struct blue_command_parameters »bcomp,
struct battle_parameters »batp, struct red_parameters »redp,
struct blue_parameters »bluep),-

float COMPUTEREDPENALTY_GC(int i, int imrr, int »igoalflag, int irinrinjnum,
int ibinrinjnum, float zmin, int iflag[5][5], float z[5][5],
struct red_GC_parameters »rgcp, struct blue_GC_parameters »bgcp,
struct red_command„parameters »rcomp, struct blue_command_parameters »bcomp,
struct battle_parameters »batp, struct red_parameters »redp,
struct blue_parameters »bluep);

float COMPUTEBLUEPENALTY{int i, int imbr, int »igoalflag, int irinbinjnum, int ibinbinjnum,
float zmin, int i£lag[5][5], float z[5][5], struct red_command_parameters »rcomp
struct blue_command_parameters »bcomp, struct battle_parameters »batp,
struct red_parameters »redp, struct blue_parameters »bluep) ,-

float COMPUTEBLUEPENALTY_C0MM(int i, int imbr, int »igoalflag, int irinbinjnum,
int ibinbinjnum, float zmin, int iflag[5][5], float z[5][5],
struct red_command_parameters »rcomp, struct blue_command__parameters »bcomp,
struct battle_parameters »batp, struct red_parameters »redp,
struct blue^parameters »bluep);

float COMPUTEBLUEPENALTY_GC{int i, int imbr, int »igoalflag, int irinbinjnum, int ibinbinjnum,
float zmin, int iflag[5][5], float z[5][5], struct red_GC_parameters »rgcp,
struct blue_GC_parameters »bgcp, struct red_command_parameters »rcomp,
struct blue_command_parameters »bcomp, struct battle_parameters »batp,
struct red_parameters »redp, struct blue_parameters »bluep);

void COMBAT(struct battle_parameters »batp, struct red_parameters »redp,
struct blue_parameters »bluep, long »idum, int »»ilblbinr, int »»ilblrinb);

void C0MBAT_2{ struct battle_parameters »batp, struct red„parameters »redp,
struct blue_parameters »bluep, long »idum, int »»ilblbinr, int »»ilblrinb);

274

Appendix C: Source Code for ISAAC

void UPDATEPICTURE(FILE *stat_data[22], int itime, int rcd_GC_flag, int blue„GC_flag,
struct red__command_parameters *rcomp, struct blue_command_parameters *bcomp,
struct battle_parameters *batp, struct red_parameters *redp,
struct blue_parameters *bluep, struct statistics *s);

int PROMPT_SCREEN(struct battle_parameters *batp, struct red_parameters *redp,
struct blue_parameters *bluep, struct red_GC_parameters *rgcp,
struct blue_GC_parameters *bgcp, struct reä_command_parameters *rcomp,
struct blue_command_parameters *bcorop, struct statistics *s, long *idum);

void RED_LCCAL_C0MMAND_1(int i_command, int itime, struct red_GC_parameters *rgcp,
struct red_command_parameters *rcomp, struct blue_command_parameters *bcomp,
struct battle_parameters *batp, struct red_parameters *redp,
struct blue_parameters *bluep, long *idum);

void BLUE_LOCAL_C0MMAND_l(int i_command, int itime, struct blue_GC_parameters *bgcp,
struct red_command_parameters *rcomp, struct blue_command_parameters *bcomp,
struct battle_parameters *batp, struct red_parameters *redp,
struct blue_parameters *bluep, long *idum);

void RED_L0CAL_C0MMAND_2(int i_command, int itime, struct red_command_parameters *rcomp,
struct blue_commancLparameters *bcomp, struct battle_parameters *batp,
struct red_parameters *redp, struct blue_parameters "bluep, long *idum),-

void BLUE_LCCAL_COMMAND_2{int i_command, int itime, struct red_command_parameters *rcomp,
struct blue_command_parameters *bcomp, struct battle_parameters *batp,
struct red_parameters *redp, struct blue_parameters *bluep, long *idum);

void RED_GLOBAL_COMMAND(struct red_GC_parameters *rgcp, struct red_command_parameters *rcomp,
struct red_parameters *redp, long *idum);

void BLUE_GLOBAL_COMMAND(struct blue_GC_parameters *bgcp, struct blue_command_parameters *bcomp,
struct blue_parameters *bluep, long *idum);

void RED_PROMOTIONS(struct red_command„parameters *rcomp, struct red_parameters *redp, long *idum);

void BLUE_PROMOTIONS(struct blue_command_parameters *bcomp, struct blue_parameters *bluep, long *idum);

void RED_SWATH_AREA(int isize, struct red_GC_parameters *rgcp,
struct red_cotnmand_j?arameters *rcomp, struct red_parameters *redp);

void BLUE_SWATH_AREA(int isize, struct blue_GC_parameters *bgcp,
struct blue_command_parameters *bcomp, struct blue_parameters *bluep);

void RED_SWATH_DENSITY(int isize, struct red_GC„parameters *rgcp,
struct red__command_parameters *rcomp, struct red_parameters *redp,
struct blue_parameters *bluep);

void BLUE_SWATH_.DENSITY(int isize, struct blue_GC„parameters *bgcp,
struct blue_command_parameters *bcomp, struct red_parameters *redp,
struct blue_parameters *bluep);

unsigned char PLAYBACK(unsigned char plotfilename[30], int *idata, unsigned char filename[30],
int *ichoice);

void INTERPOINTJDIST(struct red_command_parameters *rcomp, struct blue_command_parameters "bcoinp,
struct red_parameters *redp, struct blue_parameters *bluep, struct statistics *s);

void SPATIAL_ENTROPY(int isize, struct statistics *s, struct red_parameters *redp,
struct blue_parameters *bluep),-

void CLUSTER_1(int isize, struct red_parameters *redp, struct blue_parameters *bluep,
struct battle_parameters *batp, struct statistics *s);

void CLUSTER_2{int isize, struct red_parameters *redp, struct blue_parameters *bluep,
struct battle_parameters *batp, struct statistics *s);

void NEIGHBORS(FILE *stat_data[22], int itime, struct red_parameters *redp, struct blue_parameters *bluep,
struct statistics *s);

void CENTER_MASS(FILE *stat_data[22], int itime, struct red_parameters *redp,
struct blue_parameters "bluep, struct statistics *s);

void GOAL_STATS(FILE *stat_data[22], int itime, int isize, struct red_parameters *redp,
struct blue_parameters *bluep, struct statistics *s);

void WRITE_INTERPOINT(int itime, struct statistics *s, FILE *stat_data[22]);

void WRITE_JL.CLUSTER(int itime, struct statistics *s, FILE *stat_data[22]) ,-

void WRITE_2_CLUSTER(int itime, struct statistics *s, FILE *stat_data[22]);

float abs_float (float x);

float getrandom(int x, int y, long *idum);

float rani{long *idum);

void nomemO ,-

//**** * ** .**.**.*..*.********************* *******
//
// MAIN: RUN ISAAC
//
/,***********.***„ ************ **** *****..* ** * ** *******

void main()

275

Appendix C: Source Code for ISAAC

mt l, li, D;
int imx, imy;
int im, imc;
int igoal;
int igoalflag;
int imove;
int ibinrnum;
int irinbnum;
int irinmum;
int ibinbnum;
int iradvnum;
int ibadvnum;
int irinrinjnum;
int ibinbinjnum;
int irinbinjnum;
int ibinrinjnum;
int playterm;
int itime;
int iternum;
int irun_choice;
int idata;
int imovecand[26];

// loop variables
// loop variables
// labels for intermediate candidte moves
// termination flag; =1 —> red wins
// if =1 then red wins; if =2 then blue wins
// labels selected move (1 <= imove <= 9)
// number of blue ISAACS in red sensor range
// number of red ISAACS in blue sensor range
// number of red ISAACS in red sensor range
// number of blue ISAACS in blue sensor range
// threshold number of reds to advance
// threshold number of blues to advance
// number of injured red in red sensor
// number of injured blue in blue sensor
// number of injured red in blue sensor
// number of injured blue in red sensor
// return variable from PLAYBACK; l=Quit
// time counter
// number of iterations to store in file
// if 1 then continue, else new start
// =1 = screen prompt; 2= read from datafile
// intermediate move candidates from which
//an ISAAC will choose an actual move
// i£lag=l if a particular move represents a viable option
// l=trace "ON", else trace "OFF"
// = red.iredmoverange if alive, else = 1
// = blue.ibluemoverange if alive, else = 1
// if =1 then VGA, if =2 then SVGA

int iflag[5][5];
int itrace;
int imrr;
int imbr;
int igraphtype;
int save_flag;
int jj, icount;
int bluelabel_randomizeä[MAXISAACNUM];
int redlabel_randomized[MAXISAACNUM) ,-
int **ilblrinb; // jth red's (in blue's range) label
int **ilblbinr; // jth blue's (in red's range) label

long idum;

float zmin;
float zmoveprob;
float zran;
float z[5][5];

// random number seed (dummy 'carry-over' variable)

// minimum seed used by penalty function

// variable to catch initial ran number call
// intermediate expected penalty function

unsigned char buffer, bufferq;
unsigned char filename[30];
unsigned char outfilename[30];
unsigned char snapshotfile[303;
unsigned char plotfilename[30];
unsigned char fondir [_MAX_PATH);
unsigned char list[20J;
char bb[20I;
short xfon;

FILE *outdatafile;
FILE *stat_data[22];

struct _fontinfo fi;
struct __videoconfig vc;

// name of input data file
// name of output file
// name of output file
// name of plot file to be played-back

//*
//
//
//
//*

Allocate Memory for Matrices

ilblrinb = (int**) _fmalloc((MAXISAACNUM+1) * sizeoffint*)) ;
if (!ilblrinb) nomemO;
for (i = 0; i < (MAXISAACNUM+1); i++)

ilblrinbli] = (int*) _fmalloc((MAXNEIGHBORNUM+1) * sizeof(int)) ;
if (!ilblrinb[i]) nomemO;

)
ilblbinr = (int**) _fmalloc((MAXISAACNUM+1) ♦ sizeoffint*)) ;
if ((ilblbinr) nomemO;
for (i = 0; i < (MAXISAACNUM+1); i++)

ilblbinrti] = (int*) _fmalloc((MAXNEIGHBOENUM+1) * sizeof(int)) ;
if (!ilblbinrti]) nomemO;

)

//*
//
//
//
//*

Register and Set Fonts

if(_registerfonts("sserife.FON") <= 0)

_outtext("Enter full path where .FON files are located: ") ,-
gets(fondir);
strcatl fondir, "*.FON");
if(_registerfonts(fondir) <= 0)
(

_outtext("Error: can't register fonts");
exit(1);

)
}

276

Appendix C: Source Code for ISAAC

//*
//
//
//
//*

Sec graphics colors

reä_.command.red_command_color = 14;
blue__.command.blue__command_color = 15;
red.squadcolor = 14;
blue.squadcolor = 15;
red.redcolor = 12;
blue.bluecolor = 9;
battle.goalcolor = 10;
battle.boxcolor = 3;
blue_command.blue_subordinate_color„flag =
red_command.red_subordinate_color_flag = 0;

//
//
//

}

(!_setvideomode (
_setvideomode(
_clearscreen(.

Set Video Mode

_SRES16COLOR)){
_VRES16COLOR);
GCLEARSCREEN),-

Opening Screen

100, 85, 700, 90);

//
//
//
// .**.***************„

_setbkcolor (_BLUE);
_clearscreen{ _GCLEARSCREEN);
_getvideoconfig{ &vc);
_setcolor{ 15);
_moveto(75, 80) ;
_rectangle_w{ _GFILLINTERIOR,
_moveto(565, 295);
_rectangle_w{ _GFlLLINTERIOR,
strcat{ strcat(strcpyt list,
strcat(list, "h30w24b");
_getfontinfo{ &£i);
_setfont(list);
_setcolor(15);

xfon = (vc.numxpixels / 2) - {_getgtextextent ("ISAAC") / 2) ,-
_moveto{ xfon, 105);
_outgtext ("ISAAC");

xfon = (vc.numxpixels / 2} - (_getgtextextent("Irreducible Semi-Autonomous") / 2);
_moveto(xfon,. 143);
_outgtext ("Irreducible Semi-Autonomous");

100, 270, 700, 275
), "sserife").

2)

2)

");
2)

xfon = (vc.numxpixels / 2) - (_getgtextextent("Adaptive Combat") / 2);
_moveto(xfon, 173);
_outgtext ("Adaptive Combat");
_unregisterfonts();
_registerfonts{ "oemlO.FON");
strcat{ strcat(strcpy{ list, "t'"), "oemlO"),"'");
strcat{ list, "h30w24bv");
_setfont(list) ,-
_getfontinfo(&fi);

xfon = (vc.numxpixels / 2) - („getgtextextent("Version 1.8.4") / 2);
_moveto(xfon, 227);
_outgtext ("Version 1.8.4");

xfon = {vc.numxpixels /
_jmoveto{ xfon, 242);
_outgtext ("10 April 1997");
_setcolor{ 7);

xfon = (vc.numxpixels /
_moveto(xfon, 300);
_outgtext ("Andy Ilachinski"

xfon = (vc.numxpixels /
_moveto(xfon, 315);
„outgtext {"Center for Naval Analyses");

xfon = {vc.numxpixels / 2) - („getgtextextent("4401 Ford Avenue") / 2);
_moveto(xfon, 330);
_outgtext {"4401 Ford Avenue") ,-

xfon = {vc.numxpixels / 2) - („getgtextextent("Alexandria, VA 22302") / 2);
_moveto(xfon, 345);
_outgtext {"Alexandria, VA 22302");

xfon = {vc.numxpixels / 2) - {_getgtextextent("ilachina@cna.org") / 2);
jmoveto{ xfon, 360);
_outgtext ("ilachina@cna.org");

xfon = {vc.numxpixels / 2) - {„getgtextextent{ "Press <ENTER> to continue ...
_moveto{ xfon, 550);
_outgtext ("Press <ENTER> to continue "),-

_getch();

startagain:

// set default trace to no trace
itrace = 0;

// initialize squad number to display on screen
red.display__red„squad = 1;
blue.display_blue_sguad = 1;
battle.squad_color_flag = 0; // default is to NOT highlight

(_getgtextextent("10 April 1997") / 2);

(_getgtextextent{ "Andy Ilachinski") / 2);

(_getgtextextent("Center for Naval Analyses") / 2);

) / 2);

277

Appendix C: Source Code for ISAAC

// initialize "playback" flag
playterm = 0;

// seed random number generator
idum=-31415926;
zran=:ranl (&idum);

if (!_setvideomode< _SRES16COLOR)){
_setvideomode (_VRES16COLOR) ;
_clearscreen(_GCLEARSCREEN);

)
_setbkcolor (_BLUE);
_clearscreen(_GCLEARSCREEN);

_unregisterfonts{);
_registerfonts("sserife.FON") ;
strcatl strcatl strcpyl list, "f"), "sserife"), "•");
strcatl list, "h30w24bv");
_getfontinfo(&fi);
_setfont(list);
xfon = (vc.numxpixels / 2) - (_getgtextextent ("SELECT RUN OPTION") / 2);
_moveto{ xfon, 55);
_outgtext ("SELECT RUN OPTION");
_settextposition(7, 35);
printf("[l] Run ISAAC engine with new input");
_settextposition(8, 35);
printf("[21 Playback old run");
_settextposition(9, 35);
printf{"[3] Quit");
_settextposition(11, 39);
printf("? ");
scanf("%i",&battle.ichoice);

if {battle.ichoice == 3}{
exit(l);

)
if (battle.ichoice ==> 2){

goto playback; // goto end of file
)
xfon = (vc.numxpixels / 2) - (_getgtextextent ("SPECIFY FORM OF INPUT") / 2);
_moveto{ xfon, 215 };
_outgtext ("SPECIFY FORM OF INPUT");
_settextposition(17, 40);
printf("[11 Prompt from screen ");
_settextposition(18, 40);
printf("[2] Read from datafile ");
_settextposition(20, 44);
printf("? ");
scanf("%i",&idata);

if (idata == 2){
_settextposition(22, 40);
printf("File name ? ");
scanf("%s", &filename);

read_data:

//......................
//
// Read input from data file
// //....................................
INPUT_FILE_DATA(filename, tstats, &red_GC, &blue_GC, &red_command, &blue_command,

&battle, &red, &blue, fcidum);

xfon = (vc.numxpixels / 2) - (_getgtextextent("SPECIFY FORM OF OUTPUT") / 2);
_moveto(xfon, 390);
_OUtgtext ("SPECIFY FORM OF OUTPUT");
_settextposition(28, 45);
printf{"[1] Terminal ");
_settextposition(29, 45);
printf("(2) File ")
_settextposition(30, 45);
printf("[3] Both ")
_settextposition(32, 49);
printf("? ");
scanf("%i",&battle.ioutdata);

if (battle.ioutdata > 1)(
_settextposition(34, 45);
printf("File name ? ");
scanf("%s", &outfilename);

)
if (idata — 2 &£ battle.itermcond == 2 && battle.ioutdata > 1)(

_settextposition(35, 28);
printf("NUMBER OF ITERATIONS TO STORE IN OUTPUT FILE ? ");
scanf ("%i",&itemum) ;

)
else{

iternum = 1000;
)

278

Appendix C: Source Code for ISAAC

if (battle.ioutdata != 2){
igraphtype =2; // default graphics = SVGA
if (!_setvideomode(_SRES16C0LOR)){

_setvideomode (_VRES16C0L0R);
_clearscreen(_GCLEARSCREEN);

)
}

_unregisterfonts(),-
_registerfonts("oemlO.FON");
strcatl strcatl strcpy(list, "t"), "oemlO"), "'") ;
strcatl list, "h30w24bv");
_getfontinfo(&fi);
_setfont(list);

if (idata == 1){

//
// Prompt user for input data
// //.»..**«
//INPUT_SCREENJDATA(&red_GC, &blue_GC, &red_command, &blue_command, fcbattle,
// &red, &blue, fcidum, fciternum);

_clearscreen{ _GCLEARSCREEN);

_getvideoconfig(&vc);
if (vc.numxpixels < 641} { // then use VGA values

_settextposition(10, 15);
)
else(

_settextposition(10, 25);
)
printfCSAVE PARAMETER VALUES TO DATA FILE (y=l/n=0) ? ") ;
scanf{"%i"#&save_flag);

if (save_flag -- 1){
//*****
//
// Save current parameter set to data file
// //...,....
if {vc.numxpixels < 641) { // then use VGA values

_settextposition{ 12, 15);
>
else{

_settextposition(12, 25);
)
printf{" File name ? ");
scanf("%s", &filename);

if ((outdatafile = fopen(filename, "wt")) == NULL)(
printf{" Cannot open data file.Xn");
exit(l);

)
WRITE_DATA_FILE(outdatafile, sstats, &red_GC, &blue_GC, &red_command,

tblue_command, fitbattle, &red, &blue);
)

) // end if idata == 1

//......
//
// if battle.ioutdata>l then write data to file
//
//****
if (battle.ioutdata > 1){

if ((outdatafile = fopen(outfilename, "wt")) == NULL }{
printf{" Cannot open data file.Xn"),-
exit(l);

)
WRITE_OUT_FILE(outdatafile, red_GC.red_GC_flag, blue_GC.blue_GC_flag,

&red_command, &blue_command, fcbattle, &red, tblue);
)
//**
//
// start here if any options are changed on-the-fly using PROMPT_SCREEN()
// //

changeoption:

_setbkcolor (_BLACK);
_clearscreen(_GCLEARSCREEN);

//......
//
// Initialize combat battlefield
// //

279

Appendix C: Source Code for ISAAC

INITIALIZE_FIELD(&stats, &red_GC, &blue_GC, &red_command, &blue_command, sbattle,
£red, &blue, iflag, fcidum);

// **
II
II
II

itime = 0;

Initialize time counter

//*
//
//
//
//*
if

//"
//
//
//
II*
if

Dump data to screen and show initial configuration

(battle.ioutdata != 2){
SCREENDATAdtime, idata, filename, &red_command, &blue_command, fcbattle,

fired, &blue);

Are statistics to be tabulated?

(stats.stat_flag == 1){
_getvideoconfig(&vc),-
if ((stat_data[l) = fopenCstats_l.dat",

(stat_data[2)
(stat_data[3)
(stat_data[4)
(stat_data[5)
(stat_data[6]
(stat_data[7]
(stat_data[8]
(stat_data[9)
(stat_data[10]
(stat_data[ll]
(stat_datatl2]

fopen("stats_2. dat"
fopen("stats_3.dat",
fopen("stats_4.dat",
fopen("stats_5.dat",
f open ("stats_6.dat",
f open (" stats_7. dat",
fopen("stats_8.dat",
fopen("stats_9.dat",

= fopenfstats_10.dat"
= fopenCstats_ll.dat"

f open {" stats_12. dat",

"wt") == NULL
"wt") == NULL
■wt") == NULL
"wt") == NULL
"wt") == NULL
"wt") == NULL
"wt") == NULL
"wt") == NULL
"wt") == NULL
, "wt)) == NULL
, "wt)) — NULL
, "wt)) == NULL
, "wt)) == NULL)((stat_data[13] = fopenl-stats_13.dat"

printft" Cannot open data file.Xn");
exit(l);

}
if (vc.numxpixels < 641) { // then in VGA mode

_setviewport(200,455,525,465);
_clearscreen („GVIEWPORT } ,-
_setviewport(l,1,639,479);
_moveto(205, 450);
_setcolor(14);
_setgtextvector(1, 0 ,);
_outgtext("Statistics being calculated ... ");
_setviewport(140,48,525,428);

>
else{

_setviewport(260,575,680,590);
_clearscreen(_GVIEWPORT) ,-
_setviewport(l,1,799,599) ,-
_moveto(270, 577);
_setcolor(14);
_setgtextvector(1, 0);
_outgtext("Statistics being calculated ... ");
_setviewport(120,50,680,550) ,-

>
}

llllllllllllllllllllll/ll
II
II START MAIN DYNAMICS LOOP
//
in 1111 in 1111111 n 1111 / n 111 /1111111iiiui

++itime; // increment time counter

//*
//
//
//
//*

Calculate descriptive statistics

if (stats.stat_flag

//
IX

// calculate ISAACA-ISAACA and ISAACA-goal interpoint distributions
//
if (stats.interpoint_flag == 1){

INTERPOINT_DIST(&red_command, &blue_command, &red, &blue, fistats);
WRITE_INTERPOINT(itime, Sstats, stat_data);

}

//
// calculate spatial entropy using different course-graining
//
if (stats.entropy_flag ==:'1){

SPATIAL_ENTROPY(battle.isize, fcstats, sred, sblue);
fprintf(stat_data[91, "%3i %5.4f %5.4f %5.4f %5.4f %5.4f %S.4f %5.4£ %5.4f %5.4f\n"

itime, stats.red_entropy_l, stats.blue_entropy_l, stats.red_blue_entropy„l,

280

Appendix C: Source Code for ISAAC

stats. red_entropy_2, stats. blue_entropy_2, stats. red__blue_entropy_2,
stats.red_entropy_3, stats.blue_entropy_3, stats.red_blue_entropy_3);

)

//
// find cluster size distribution (using D=l)
//
if (stats.cluster_l_flag==l){

CLUSTERJ. (battle.isize, &red, Sblue, sbattle, Sstats);
WRITE_l_CLUSTER(itime, Sstats, stat_data);

}

//
// find cluster size distribution (using D=2)
//
if (stats.cluster_2_flag==l)(

CLUSTER_2(battle,isize, Sred, iblue, Sbattle, Sstats);
WRITE 2_CLUSTER(itime, Sstats, stat_data);

}

//
// find average number of neighboring ISAACAs at distance D <= R
// (write to stats_14.dat, stats_15.dat,... , stats_19.dat)
//
if (stats.neighbors_flag == 1)(

NEIGHBORS(stat_data, itime, sred, sblue, sstats);
)

//
// calculate ISAACA-ISAACA and ISAACA-goal interpoint distributions
// (write to stats_20.dat»
//
if (stats.center_mass_flag " 1}(

CENTER_MASS(stat_data, itime, Sred, Sblue, sstats);
)

//
// calculate goal statistics
// (write to stats_21.dat)
//
if (stats.goal_stat_flag == 1){

GOAL_STATS(stat_data, itime, battle.isize, sred, Sblue, Sstats);
)

)
//*** *
//
// Should order of move selection be shuffled during each iteration?
// //...............
if (battle.imove_selection == 1){ // select moves in fixed order

for (3=1; j<=red.irednum; ++j){
redlabel„randomized[j] = j;

}
}
else{

//
// Randomize order in which to consider moves for red ISAACAs:
// 'i' is the actual label and the array redlabel_randomized[j] = i
// . //......................
icount=0;
for {j=l; j<=red.irednum; ++j){

// select random label between 1 and red.irednum
ired: i = (int)(getrandomt 0, red.irednum, sidum))+l;

// test to see if label has already been used
for (jj=l; J3<=icount; ++33)(

if (redlabel_randomized[3 3-] == i) goto newired;
)
++icount;
redlabel randomizedlj] = i;

}
)
if (battle.imove_selection == 1){ // select moves in fixed order

for (j=l; j<=blue.ibluenum; ++j){
bluelabel_randomized[3'] = 3;

)
)
else{ //...........

//
// Randomize order in which to consider moves for blue ISAACAs:
// 'i* is the actual label and the array bluelabel_randomized[j]
//
// * *
icount=0;
for (j=l; 3<=blue.ibluenum; ++j)(

// select random label between 1 and red.irednum
blue: i = (int)(getrandomf 0, blue.ibluenum, sidum))+l;

// test to see if label has already been used
for (33=1; jj<=icount; ++jj)(

if (bluelabel_randomized[jj] == i) goto newiblue;
)
++icount;
bluelabel_randomized[j] = i;

281

Appendix C: Source Code for ISAAC

}

//*** ************ *•*»**••**•*******************************.***-*****-****************
//
// Scan for user interrupt:
//
// A —> set flag for measuring and recording run statistics
// B —> toggle blue squad parameters to display
// C --> paint "command structure'
// D —> open data file
// E —> toggle red squad parameters to display
// F —> fast screen update
// H —> take a 'snapshot* of the current configuration
// L —> close statistics files
// N —> restart with random seed
// 0 —> options for making 'on-the-fly' parameter changes
// P —> open 'playback* <*.out) file
// Q —> quit
// R —> restart with same random seed (re-run)
// S —> single-step screen update
// T —> enable trace
// U —> toggle: hightlight squads whose parameters are currently displayed
// //******* ****** * * ***.**..***»*****•* ******.*********************

wait: if(battle.default„speed -= 2 && !_kbhit()) goto wait;

if(_kbhit{)){
buffer = _getch{);

options: switch (buffer) {
case 'u': // hightlight squads whose parameters are currently displayed

if (battle.squad_color_flag « 0){
battle.squad_color_flag = 1; // highlight *on*

}
else{

battle.squad_color_flag = 0; // highlight 'off
)
_clearscreen(_GVTEWPORT),-
UPDATEPICTURE(stat_data, itime, red_GC.red_GC_flag,

blue_GC.blue„GC_flag,&red_command, &blue_command,
fcbattle, &red, &blue, &stats);

goto wait;
break;

case 'e': // toggle red squad parameters to display
i f (red.num_red_squads > 1){

red.display_red_squad =
{red.display„red_squad + 1) % (red.num_red_squads+l) ;

if (red.display_red_squad==0)red.display_red_squad=l;
_clearscreen(_GCLEARSCREEN);
SCREENDATAtitime, idata, filename, &red_command, &blue_command, fcbattle, &red, iblue);
UPDATEPICTURE(stat_data, itime, red_GC.red_GC_flag,

blue_GC.blue_GC_flag,&red_command, &blue_command,
&battle, &red, &blue, fistats);

}
goto wait;
break;

case 'b': //toggle blue squad parameters to display
if (blue.num_blue_squads > 1)(

blue.display_blue_squad =
{blue.display_blue_squad + 1) % (blue.num_blue_squads+l);

if (blue. display_.blue_squad==0) blue. display_blue_squad=l ;
_clearscreen(_GCLEARSCREEN);
SCREENDATAtitime, idata, filename, &red_command, &blue_command, &battle, &red, &blue);
UPDATEPICTURE(stat_data, itime, red_GC.red__GC_flag,

blue_GC.blue_GC_flag,&red_command, &blue__command,
&battle, &red, &blue, &stats);

}
goto wait;
break;

case 'h': // take a 'snapshot' of the current configuration
_getvideoconfig(&vc);
if (vc.numxpixels < 641) { // then in VGA mode

_setviewport(200,455,525,465);
_clearscreen(„GVIEWPORT);
_setviewport(1,1,639,479);
_rooveto(205, 450);
_setcolor(14);
_setgtextvector(1, 0);
_outgtext(" 'Snapshot' file name ? ");
settextpositiont 29, 52);

}
else{

_setviewport(260,575,680,590);
_clearscreen(_GVIEWPORT);
_setviewport(l,l,799,599);
_moveto(270, 577);
_setcolor(14);
_setgtextvector (1, 0),-
_outgtext(" * Snapshot' file name ? ');
_settextposition(37, 59);

}
scanf (■,%s", fisnapshotfile) ,-
if ((outdatafile = fopen(snapshotfile, "wt")) == NULL){

printfC Cannot open data file.\n");
exit(l);

}

282

Appendix C: Source Code for ISAAC

_clearscreen E _GCLEARSCREEN) ;
SCREENDATA{itime, idata, filename, &red_command, &blue_command, fcbattle, &red, fcblue);
UPDATEPICTURE(stat_data, itime, red_GC.red_GC_flag, blue_GC.blue„GC_flag,&red_command,

&blue_command, fibattle, &red, &blue, &stats);
WRITE_OUT_FILE(outdatafile, red_GC.red_GC_flag, bluej3C.blue„GC_flag, &red_command,

&blue_command, fibattle, &red, &blue);

//
// write current configuration
//

fprintf(outdatafile, "%i\n", itime);

i£ (red_command.red_command_flag == 0) {
for (i=l; i<=red.irednum; ++i) {

fprintf(outdatafile, "%i %i %i\n", red.rstatusli], red.redx[i], red.redyti]);
)

}
else(

for (i=l; i<=red.irednum; ++i) {
fprintf(outdatafile, "%i %i %i %i\n", red.rstatusli], red.redx[i],

red.redy[i], red_command.red command[i]);
)
fprintf(outdatafile, "%i\n", red_command.num_red_commanders);
for (i=l; i<= red_command.num„red_commanders; ++i){

fprintf(outdatafile, "%i %i %i\n", red_command.red_ISAACA_commander[i],
red_command.red__command_R[i], red_command.red_num_under_command[i]);

for (j=l; j<=red_command.red_num_under_command[i]; ++j){
fprintf(outdatafile, "%i\n", red_command.red_ISAACA_under_command[i][j]);

)
}

}

if (blue_command.blue_command_flag == 0) {
for (i=l; i<=blue.ibluenum; ++i) {

fprintf(outdatafile, "%i %i %i\n", blue.bstatus[i], blue.bluex[i], blue.bluey[ij);
}

}
else{

for {i=l; i<=blue.ibluenum; ++i) {
fprintf(outdatafile, "%i %i %i %i\n", blue.bstatus[i], blue.bluexti],

blue.bluey[i], blue_command.blue_command[i]);
)
fprintf(outdatafile, "%i\n", blue_command.num_blue_commanders);
for (i=l; i<= blue„command.num_blue_commanders; ++i){

fprintf(outdatafile, "%i %i %i\n", blue_command.blue_ISAACA_commander[i],
blue_command.blue_command_JR[i], blue_command.blue_num_under_command[i]);

for (j=l; j<=blue_command.blue_num_under_command[i]; ++j){
fprintf(outdatafile, "%i\n", blue_command.blue_ISAACA_under_command[i}[j]);

}
)

}

fclose(outdatafile);
goto wait;
break;

case 'n': // restart with random seed
// close statistics output files
if (stats.stat_flag > 0){

for (ii=l; ii<=13; ii++){
fclose(stat_data[ii]);

}
)
// set default trace to no trace
itrace = 0;

// initialize squad number to display on screen
red.display_red_squad = 1;
blue.display_blue_sguad = 1;
battle.squad_color_flag = 0;

// re-set fratricide counters
battle. red__f rat_count=0 ;
battle.blue_frat_count=0;

// re-set defense counters
if (rea.defense_flag==0){

for(ii=l;ii<=fed.irednum;ii++)red.defense clock[ii]=0;
}
if (blue.defense_flag==0){

for(ii=l;ii<=blue.ibluenum;ii++)blue.defense_clock[ii]=0;
}

// reset command structure
reä_command.red_subordinate_color_flag = 0;
blue_command.blue_subordinate_color_flag = 0;

// initialize for run
goto changeoption;
break ,-

case 'c': // paint 'command structure'
if ((red_GC.red_GC_flag == 1 && red_command.num_red_commanders > 1) j j

(blue_GC.blue_GC_flag == 1 && blue_command.num_blue„commanders > 1)){
red_command.red_subordinate_color_flag =

(red__command.red_subordinate_color_flag + l) % 9;
blue_command.blue_subordinate_color_flag =

283

Appendix C: Source Code for ISAAC

(blue_command.blue_subordinate_color_.flag + 1) % 9;
}
else{

if <red_command.red_comrriand__flag == 1) {
rcd_conimand. red_subordinate_color_f lag =

(red_command.red_subordinate_.color_£lag + 1) % 8;
}
if (blue_commanä.blue_command_flag == 1){
blue_command.blue_subordinate_color_flag =

(blue_command.blue_subordinate_color_flag + 1) % 8;
}

>
_clearscreen(„GVIEWPORT);
UPDATEPICTURE(stat_data, icime, red_GC.red_GC_flag,

blue_GC.blue_GC_flag,&red_command, _blue„command,
„battle, &red, &blue, &stats);

goto wait;
break;

case 'd*: // open data file
idata = 2; // set data input flag to read data file
_getvideoconfig(&vc);
if (vc.numxpixels < 641) { // then in VGA mode

_setviewport(200,455,525,465);
„clearscreen(_GVIEWPORT);
_setviewport(1,1,639,479);
_moveto(205, 450) ;
_setcolor(14);
_setgtextvector(1, 0);
_outgtext(u Input-data file name ? "};
_settextposition(29, 52),-

)
else{

_setviewport(260,575,680,590) ;
_clearscreen(_GVIEWPORT);
_sefcviewport(l,1,799,599);
_moveto(270, 577);
_setcolor(14,) ;
_setgtextvector(1, 0);
_outgtext(" Input-data file name ? ") ;
_settextposition(37, 61);

}
scanf("%s", &filename);
_clearscreen(_GCLEARSCREEN);

// set default trace to no trace
itrace = 0;

// initialize squad number to display on screen
red.display_red„squad = 1;
blue.display_blue__squad = 1;
battle.squad_color_flag = 0;

// Re-seed random number generator
idum=-31415926;
zran=ranl(&idum);

// reset command structure
red_command.red__subordinate_color_f lag = 0;
blue_command.blue_,subordinate__color_flag = 0;

//**** *************** ***********************************
II
It Read input from data file
// //***** ************ ****************** ***** *
INPUT_FILE_DATA(filename, fcstats, &red_GC, &blue_GC, &red_command,

&blue_command, &battle, &red, &blue, &idum);
goto changeoption;
break ,-

case 'p': // open 'playback' (".out) file
// close statistics output files
if (stats.stat_flag > 0){

for (ii=l; ii<=13; ii++)C
fclose(stat_data[ii]);

}
)
battle.ichoice = 2; // set select run option flag to playback file
_getvideoconfig(&vc);
if (vc.numxpixels < 641} { // then in VGA mode

„setviewport(200,455,525,465};
„clearscreent „GVIEWPORT);
_setviewport(1,1,639,479) ;
_moveto(205, 450);
_setcolor(14);
_setgtextvector(1, 0);
_outgtext(" Playback-data file name ? ");
_settextposition(29, 54);

}
else{

_setviewport(260,575,680,590) ;
_clearscreen(_GVIEWPORT);
_setviewport{l,1,799,599);
_moveto{ 270, 577);
_setcolor(14);
„setgtextvector(1, 0);
_outgtext(" Playback-data file name ? ");

284

Appendix C: Source Code for ISAAC

_settextposition{ 37, 63);
)
scanf("%s", &plotfilename);
_clearscreen(_GCLEARSCREEN);
goto playagain;
break;

case 's': // single-step screen update
battle.default_speed = 2;
break;

case 'f: // fast screen update
battle.default_speed = 1;
break;

case 'q':
_getvideoconfig{ &vc);
if (vc.numxpixels < 641) { // then in VGA mode

_setviewport{200,455,525,465);
_clearscreen{ _GVIEWPORT);
„setviewport{1,1,639,479);
_moveto{ 205,"455);
_setcolor{ 14);
_setgtextvector(1, 0);
outgtextf" Run Terminated");

}
else{ // in SVGA mode

_setviewport{260,575,680,590);
_clearscreen{ _GVIEWPORT);
_setviewport{1,1,799,599);
__moveto(270, 575);
_setcolor(14);
_setgtextvector{ 1, 0);
_outgtext(" Run Terminated");

)
if (battle.ioutdata > 1){

fclose(outdatafile);
}
if (stats.stat_flag > 0){

for (ii=l; ii<=13; ii++){
fclose(stat_data[ii]);

>
}

// reset command structure
red_command.red„subordinate_color_flag = 0;
blue_command.blue_subordinate„color_flag = 0;

opwaitq: bufferq = _getch();
switch {bufferq) {

case 'r':
goto playagain;
break;

case !d':
buffer=bufferq;
goto options;
break;

case 'p':
buffer=bufferq;
goto options;
break;

case 'q':
goto startagain;
break;

default:
goto opwaitq;

)
break;

case 'o': // options for making 'on-the-fly' parameter changes

//*************«*.**.*****.*.*********.***.***. .*.****
//
// Display prompt screen and make changes
//
irun_choice = PROMPT_SCREEN{&battle, &red, &blue, &red_GC, &blue_GC,

&red_command, &blue_command, &stats, &idum);

// re-set fratricide counters
battle.red_frat_count=0;
battle.blue_frat_count=0;

// * *
//
// if irun_choice = 2 (start new run with new parameters) and battle.ioutdata>l
// then write new data to file
// //*****.**********.. ******* ***** * ****
if (irun_choice == 2 && battle.ioutdata > 1){

fclose(outdatafile);

if ({outdatafile = fopen{outfilename, "wt")) == NULL){
printf(" Cannot open data file.Xn");
exit(l);

)
WRITE_OUT_FILE{outdatafile, red_GC.red_GC_flag, blue_GC.blue_GC_flag,

&red_command, &blue_command, fibattle, &red, &blue);

285

Appendix C: Source Code for ISAAC

}

if (irun_choice > 1){
// close statistics output files
if (stats.stat_flag > 0){

for (ii=l; ii<=13; ii++){
fclose(stat_data[ii]);

}
}

// set default trace to no trace
itrace = 0;

// initialize squad number to display on screen
red.display_red_squad = 1;
blue.display_blue_squad = 1;
battle.squad_color_flag = 0;

if (irun_choice == 3){
// Re-seed using old seed value
idum *= -31415926;
zran=ranl(&idum);

}

// re-set defense counters
if (red.defense_flag—0){

for (ii=l;ii<=red.irednum,-ii++)red.defense_clock[iiJ=0;

}
if (blue.defense_flag==0)(

for{ii=l;ii<=blue.ibluenum;ii++)blue.defense_clock[ii]=0;

)
// reset command structure coloring flags
red_command.red_subordinate_color_flag = 0;
blue_command.blue_subordinate_color_.flag = 0;

// initialize for next run
goto changeoption;

)
else{

_setbkcolor (_BLACK);
_clearscreen(.„GCLEARSCREEN);
if {battle.ioutdata != 2){

//***************«******.*...*.»****.******* **
//
// Update data on graphics screen
//
// ******* * .*******w*. **.**. .***»**»

SCREENDATA(itime, idata, filename, fcred_comniand,
&blue_command, Stbattle, tred, &blue) ;

}
}
break;

case 't':
if (itrace " 0){

itrace = 1; // trace 'on'
}
else(

itrace = 0; // trace 'off
}
break;

case 'r*; // restart With random seed #1 (re-run)
// close statistics output files
if (stats.stat_flag > 0){

for (ii=l; ii<=13; ii++){
fclose(stat_data[ii]);

}
}

// re-set fratricide counters
battle.red_frat_count=0;
battle.blue_frat_count=0;

// re-set defense counters
if (red.defense_flag==0){

for (ii=l;ii<=red.irednum,-ii++)red.defense_clock[ii]=0;
}
if (blue.defense_flag==0){

for(ii=l;ii<=blue.ibluenum;ii++)blue.defense_clock[ii]=0;
}

// set default trace to no trace
itrace = 0;

// initialize squad number to display on screen
red.display_red_squad = 1;
blue.display_blue_squad = 1;
battle.sguad_color_flag = 0;

// initialize "playback" flag
playterm = 0;

// Re-seed random number generator
idum=-31415926;
zran=ranl(&idum);

286

Appendix C: Source Code for ISAAC

// reset command structure coloring flags
reä_command.red_subordinate_color_flag = 0;
blue_command.blue_subordinate_color„flag = 0;

// re-initialize all data
INPUT_FILE_jDATA(filename, fcstats, &red_GC, &blue_GC, &red_command,

&blue_command, sbattle, &red, &blue, Sidum) ,-

// re-run
goto changeoption;
break;

case '1': // close statistics files
for (ii=l; ii<=13; ii++){

fclose(stat_data[iiJ);
}
// reset stat_flag
stats.stat_flag = 0;
_getvideoconfig{ &vc);
if (vc.numxpixels < 641) { // then in VGA mode

_setviewport(200,455,525,465};
_clearscreen(_GVIEWPORT);
_setviewport(140,48,525,428);

}
else{

_setviewport(260,575,680,590);
_clearscreen(_GVIEWPORT);
_setviewport(120,50,680,550);

}
goto wait;
break;

case 'a': // set flag for measuring and recording run statistics
_getvideoconfig{ &vc);
// stat_flag = 0 < > no files open, no stats
// stat_flag = 1 < > files open, stats
// stat_flag = 2 < > files open, no stats
switch(stats.stat_flag){

case 0:
stats.stat_flag = 1;
// open output stat files
if { (stat_data[l] = fopenfstats_l.dat", "wt")) == NULL

{stat_data[2] = fopen("stats_2.dat", "wt")) == NULL
(stat_data[3] = fopen("stats_3.dat", "wt")) == NULL
<stat_data[4] = fopen("stats_4.dat", "wt")) == NULL
(stat„data[5] = fopen("stats_5.dat", "wt")) == NULL
<stat_data[6] = fopenf"stats_6.dat", "wt")) == NULL
(stat_data[7] = fopen("stats_7.dat", "wt")) == NULL
<stat_data[8] = fopenCstats_8.dat", "wt")) == NULL
(stat_data[9] = fopenCstats_9.dat", "wt")) == NULL
(stat_data[10] = fopenCstats_10.dat", "wt")) ■= NULL
(stat_data[ll] = fopen("stats_ll.dat", "wtu)> == NULL
(stat_data[12] = fopen{"stats_12.dat", "wt")) == NULL
(stat_data[131 = fopenfstats_13.dat", "wt")) == NULL){

printft" Cannot open data file.\n");
exit(l);

}
if (vc.numxpixels < 641) { // then in VGA mode

_setviewport(200,455,525,465);
_clearscreen(_GVIEWPORT);
„setviewport(1,1,639,479);
_moveto(205, 450) ,-
„setcolor(14);
_setgtextvector(1, 0) ;
__outgtext("Statistics being calculated ... "),-
_setviewport{140/48,525,428);

}
else{ '

„setviewport(260/575,680,590);
_clearscreen{ _GVIEWPORT);
_setviewport{1,1,799,599);
_moveto(270, 577);
_setcolor(14);
_setgtextvector(1, 0);
_outgtext("Statistics being calculated ");
_setviewport(120,50,680,550);

)
break;

case 1:
stats.stat_flag = 2;
_getvideoconfig(&vc) ;
if (vc.numxpixels < 641) { // then in VGA mode

_setviewport(200,455,525,465);
_clearscreen(_GVIEWPORT);
_setviewport{l,1,639,479);
_moveto(200, 450);
_setcolor(14);
„setgtextvector(1,0);
_6utgtext("Statistics calculations paused ... ");
_setviewport(140,48,525,428);

}
else{

_setviewport(260,575,680,590);
_clearscreen(_GVIEWPORT);
_setviewport(l,1,799,599);
_moveto(260, 577);
_setcolor(14);
_setgtextvector(1, 0);

287

Appendix C: Source Code for ISAAC

_outgtext("Statistics calculations paused ... "
_setviewport(120,50,680,550);

}
break;

case 2:
stats.stat_flag = 1;
_getvideoconfig(five);
if (vc.numxpixels < 641) { // then in VGA mode

_setviewport(200,455,525,465);
_clearscreen („GVIEWPORT) ;
_setviewport(l,1,639,479);
_moveto(205, 450);
_setcolor(14);
_setgtextvector{ 1, 0);
_outgtext("Statistics being calculated ... "} ;
_setviewport(140,48,525,428);

)
else{

_setviewport(260,575,680,590);
_clearscreen(_GVIEWPORT);
_setviewport(l,l,799,599) ;
_jnoveto(270, 577);
_setcolor(14);
„setgtextvector(1, 0) ;
__outgtext("Statistics being calculated ... ");
_setviewport(120,50,680,550);

)
break;

)
goto wait;
break;

)
//.*.......*...«• «„„.„.„..
//
// Determine what blue isaacs are in red's neighborhood
// //................................
for (i=l; i<=red.irednum; ++i) {

ibinrnum = BLUEIHEEDI i, sred, Sblue, ilblbinr);
}

//*****
//
// Determine what red isaacs are in blue's neighborhood
//

for (i=l; i<=blue.ibluenum; ++i) {
irinbnum = REDINBLUEI i, Sred, Sblue, ilblrinb) ;

)

//
// Adjudicate combat attrition
// //...........................
if (battle.max_combat_flag == 1){ // then no limit on number of

// simultaneous engagements

COMEATt sbattle, Sred, sblue, Jkidum, ilblbinr, ilblrinb);
>
else{ // use routine that puts limit on the number of

// simultaneous engagements
COMBAT_2(ibattle, Sired, Stblue, &idum, ilblbinr, ilblrinb);

}

//*** ***
//
// Update local command structure and adjudicate local
// command 'promotion' in case of combat 'kill'
// //...... ,..,.,,,..,................
if (red_command.red_command_flag == 1) {

RED_PROMOTIONS(&red_command, &red, &idum);
)
if (blue_command.blue„command_flag == 1) {

BLUE_PROMOTI0NS(sblue_command, iblue, Sidum) ;
)
if (battle.ioutdata != 2){

//..................
//
// Update picture; first clear screen if trace is off
// //.........................
if (itrace == 0){

_clearscreen(_GVIEWPORT);
)
//*** «. ".
//
// Update picture on graphics screen

//
UPDATEPlCTURE(stat_data, itime, red_GC.red_GC_flag, blue_GC.blue_GC_flag,

288

Appendix C: Source Code for ISAAC

&red„command, &blue_command, &battle, &red, &blue, fcstats);
>

//
// Output data to file
// //>*.«•»•*.•»>
if (battle.ioutdata > 1)(//,.........,.....

//
// If termination condition is 1 (till one isaac reaches enemy goal) or
// it is 2 (continue till both sides exhausted) + the alloted time has not
// yet been reached then write current RED and BLUE states to file
// //....................
if (battle, itermcond == 1 [|

(battle.itermcond == 2 Si itime <= iternum)){

if (battle.ioutdata == 2){
_setviewport(l,200,799,300);
_clearscreen(_GVIEWPORT);
_setviewport(l,l,799,599);
_setcolor(15) ;
_unregisterf onts () ;
„registerfonts I "sserife.FON");
strcatl strcatl strcpyl list, "t'"), "sserife"), "'");
strcatt list, "h30w24bv");
_getfontinfo(&fi);
_setfont(list);

xfon = (vc.numxpixels / 2) - („getgtextextent("time = xxx") / 2);
__moveto(xfon, 250) ;
_outgtext ("time = ");
_outgtext(itoa(itime, bb, 10)) ;
_unregisterfonts();
_registerfonts("oemlO.FON");
strcatl strcat(strcpyl list, -t'"), "oemlO"), "'");
strcatl list, "h30w24bv");
_getfontinfo(&fi);
_setfont(list);

}

fprintf(outdatafile, "%i\n", itime);

if (red_command.red_command_flag =- 0) {
for (i=l; i<=red.irednum; ++i) {

fprintf(outdatafile, "%i %i %i\n", red.rstatus[il, red.redxli), red.redyli]);
}

)
else{

for (i=l; i<=red.irednum; ++i) (
fprintf(outdatafile, '%i %i %i %i\n", red.rstatus[i], red.redxli),

red.redy[i], red_command.red„command[i]);
)
fprintf (outdatafile, "%i\n", red_command.num_red_commanders) ;
for (i=l; i<= red_command.num_red_commanders; ++i) (

fprintf (outdatafile, "%i %i %i\n", red_cominand.red_ISAACA_commander[i],
red_command.red„command_R[i], red_command.red_num_under_command[i]);

for (j=l; j<=red_command.red_num_under„command(i]; ++j)(
fprintf(outdatafile, '%i\n", red_command.red_ISAACA_under_commandti][j]);

)
}

)
if (blue_command.blue_command_flag == 0) (

for (i=l; i<=blue.ibluenum; ++i) (
fprintf (outdatafile, "%i %i %i\n", blue.bstatus til, blue.bluex(i], blue.blueyli]) ;

}
)
else{

for (i=l; i<=blue.ibluenum; ++i) {
fprintf(outdatafile, "%i %i %i %i\n", blue.bstatusEi], blue.bluex[i],

blue.blueyli], blue_command.blue_command[i]) ;
)
fprintf (outdatafile, "%i\n", blue„command.num_blue_commanders) ;
for (i=l; i<= blue_command.num_blue_commanders; ++i) {

fprintf (outdatafile, "%i %i %i\n", blue_command.blue_ISAACA_commander[i],
blue_command. blue_command_R [i], blue_command. blue_num„under_command [i)) ;

for (j=l; j<=blue_command.blue_num_under_command[i]; ++j)(
fprintf (outdatafile, "%i\n", blue_command.blue_ISAACA_under_command[i] [j]) ;

)
)

)
)
else{

igoal=3;
goto goal;

)
)
//............
//
// RED local commanders generate ISAACA goals
// //.............,.........................
if (red_command.red_command_flag == 1}{

289

Appendix C: Source Code for ISAAC

for (j=1; j <=red_command. num_red_commanders; ++j) {

if {red_command.red_command_patch == 1){
RED_L0CAL_.C0MMAND._1 {j, itime, &red_GC, &red_command, &blue_command,

fibattle. Sired, &blue, &idum);
}
else{

if {red_command.red_command_patch == 2){
RED_L0CAL_C0MMAND_2{j, itime, &red_command, &blue_command, -battle, &r ed,

&blue, &idum);
}

}

)
//** *************** * *»..,*.***,..»*t***.**t.***.*,

//
// RED global commanders generate LC goals
//

if (red_GC.red_GC_flag == 1}{

RED_SWATH_AREA(battle.isize, &red_GC, &red_command, &red);
RED_SWATH_DENSITY(battle.isize, &red_GC, &red_command, &red, Sblue);
RED_GLOBAL_COMMAND(&red_GC, &red_command, &red, &idum);

//*** ************* ******************************
//
// UPDATE RED ISAACAs
// //************** **************** **

for {j=l; j<=red.irednum; ++j) {

//*****************.*************************.*..******
//
// Get randomized label
// //**********.***************************.**.*******.***.****
i = redlabel_randomized[j];

,/******************** ***********************
//
// Do only if red ISAAC is alive or injured
//
//**** * ********************* *
if (red.rstatusEi] > 0) {

//** ***************************** ** * *****
//
// Get local goals from local commander
// //****.********* *********** ********* ****************
if (red_command.red_command._flag == 1 && // if command flag is set

red_command.reds_commander[i] != 0){ // if ith ISAACA has a local commander
red_command.red_local_goal_x[i] =

red„command.red_commanö_goal_x[red_command.reds_commander[i]];
red__command. red_local_goal_y [i] =

red_cornmand.red_command_goal_y[red_command.reds_commander[i]] ,-
}

//**************.***»********.*********************.***********************
//
// What does the ith red isaac see?
//
// - irinrnum : number of reds in red
// - ibinrnum : number of blue in red
// - iradvnum : number of reds within advance range
// - ibinrinjnum : number of injured blues
// - irinrinjnum : number of injured reds
// //**********************.*************.*************************************
irinrnum = 0;
ibinrnum = 0;
iradvnum = MAXISAACNUM;
ibinrinjnum = 0;
irinrinjnum = 0;

if (red_command.red_command„flag == 1 && // if command flag is set
red_.command. red_command [i] — 2){ //if ith ISAACA is a local commander
RED_C0MMAND_SENS0R(&irinrnum, &ibinrnum, &iradvnum, &ibinrinjnum,

&irinrinjnum, i, &red_command, &red, &blue, ilblbinr);
}
else{ // use function for subordinate ISAACA

RED_SENS0R(&irinrnum, Scibinrnum, &iradvnum, &ibinrinjnum, &irinrinjnum, i,
&red, &blue, ilblbinr);

}

//.**.****** .***......************.*********** *****************
//
// Adapt red weights; i.e. determine values for red.wired, red.w2red,
// red.w3red, red.w4red, red.w5red, red.w6red to be used for this time step
// //**.************ * ************.**********.*******.*.*.************
if (red_command.red_command_flag == 0 |j

290

Appendix C: Source Code for ISAAC

red_command.red_command_flag == 1 && red_command.red_command[i] < 2){
ADAPT_RED_ISAACA_WEIGHTS(i, irinrnum, ibinrnum, iradvnum, Sred_command,

Sred);
>
if (red„command.reä_command_flag == 1 && red_command.reä_command[i) == 2){

ADAPT_RED„LC_WEIGHTS (i, irinrnum, ibinrnum, iradvnum, &red_command,
sred);

}

if (red_GC.red_GC_flag ~ 1){
ADAPT_RED_GC_WEIGHTS(i, irinrnum, ibinrnum, iradvnum, &red_GC,

&red_command, &red);
)

//
// Are Communications to be used between ISAACAs?
// ,/.........„...„..
if (red.red_COMM_flag != 0) { // if COMMs 'on' then get COMM data

RED_COMM_INFO(i, ired, Sblue);
>
//.**«..».•»♦.••

//
// Compute expected penalty for each possible move;
// isaac's move will be into square with least penalty
//

igoalflag=0; // if remains equal to 0 then goal not reached

//
// Initialize minimum sum value
// //....*.«
zmin = (float)(99999.);

// get movement range
imrr = red.iredmoverangeti];
if (red.rstatusli] == 1) imrr = 1; // if injured, make sure max range equals 1

if (red.red_COMM_flag == 1) { // use 'COMM* routine
zmin = COMPUTEREDPENALTY_COMM(i, imrr, fiigoalflag, irinrinjnum, ibinrinjnum,

zmin, iflag, z, &red_command, &blue_command, fibattle, &red, &blue);
)
else{

if (red_GC.red_GC_flag == 0) {
zmin = COMPÜTEREDPENALTY(i, imrr, &igoalflag, irinrinjnum, ibinrinjnum,

zmin, iflag, z, &red_command, &blue_command, abattle, &red, &blue);
>
else{

zmin = COMPUTEREDPENALTY_GC(i, imrr, iigoalflag, irinrinjnum, ibinrinjnum,
zmin, iflag, z, &red_GC, &blue_GC, &red_command, &blue_command,
ibattle, ired, sblue);

)
>

if (igoalflag == 1) {
igoal = 1;
goto goal;

)
//***
//
// If zmin = 99999 then there are no viable moves —> do nothing
// //.............
if (zmin == 99999.){
//
//do nothing
//

if (imrr == 1){
imove = 5;

}
else(

imove = 13;
)

)
else(//..........
//
// See what possible local moves correspond to zmin
// //...............

imc = 0; // initialize local count variable
for (imx = - imrr; imx <== imrr; ++imx) {

for (imy = - imrr; imy <= imrr; ++imy) (
if (iflaglimx + 2] [imy + 2J == 1 iSt

z[imx + 2][imy + 2] == zmin)(
// add another candidate move to count
++imc;
// select candidate move
if (imrr == 1){

291

Appendix C: Source Code for ISAAC

//
// 1 = <-l,+l) I 2 = (0,+l) I 3 = (+1.+1)
// -
// 4 = (-1,0) I 5 = (0,0) I 6 = (+1,0)
//
// 7 = (-1,-1) | 8 - (0,-1) | 9 = (+1,-1)
//
imovecand [imc] = imx + 5 - 3 * imy;

)
else(

//
// 1 = (-2,+2) | | 5 = (+2,+2)
//
//' | 13 = (0,0) |
//
// 21 = (-2,-2) | | 25 = (+2,-2)
//
imovecand [imc] = imx + 13 - 5 * imy;

)
//*** *.*...
//
// Actual move is randomly selected from among the imc candidates
// //• *.

if (imc == 1){
imove = imovecand [1];
)

else{
zmoveprob = (float) (0,0001 * getrandomd, 10000,fcidum)) ;
for (im = 1; im < imc + 1; ++im) (

if (zmoveprob > (float)(im - 1) / (float)(imc) &&
zmoveprob <= (float) (im) / (float) (imc))(
imove = imovecand [im];

}
}

)
)
//..........................
//
// Move red to new square for which penalty is minimum
// //.,.....
MOVERED (i, imrr, imove, Stbattle, &red) ;

) // end if red.rstatus[i]!=0 test

} // end i = 1 to red.irednum loop

//
//
// BLUE local commanders generate local goals
// /,..................................
if (blue_command.blue_command_flag == 1){

for (j=l; j<=blue_command.num__blue_commanders; ++j) {
if (blue_command.blue_command_patch == 1) {

BLUE_L0CAL_C0MMAND„1 (j, itime, &blue_GC, &red_command, &blue_command,
&battle, &red, fcblue, &idum);

)
else(

if (blue_command.blue_command_patch == 2){
BLUE_LOCAL_COMMAND_2(j, itime, fcred_command, &blue_command,

&battle, &red, Scblue, &idum) ;
}

}
)

}
//...................................
//
// BLUE global commanders generate LC goals
// //..........
if (blue_GC.blue_GC_flag == 1){

BLUE_SWATH_AREA(battle.isize, &blue_GC, &blue_command, sblue);
BLUE_SWATH_DENSITY(battle.isize, &blue_J3C, &blue_command, &red, fcblue) ;
BLUE_GLOBAL_COMMAND(&blue_GC, &blue_command, &blue, &idum) ;

// **** ..—.
//
// UPDATE BLUE ISAACAs
// //

for (j=l; j<=blue.ibluenum; ++j) (

//,..................
//
// Get randomized label

292

Appendix C: Source Code for ISAAC

//
//*

bluelabel_randomized[j) ;

//..*.
//
//
//

if (blue.bstatusli] > 0){

//
//
//
//«
if

Do only if blue ISAAC is alive or injured

Get local goals from local commander

1 &&// if command flag is set
0){// if ith ISAACA has a local commander

}

{blue_command.blue_command_flag ==
blue_command.blues_commander [i] !
blue_command.blue_local_goal_x[i]

blue_command.blue_command_goal_x[blue_command.blues_commander[i]] ;
blue_command.blue_local_goal_y[i] =

blue_command.blue_command_goal_y[blue_command.blues_commander[i]];

What does the ith blue isaac see?

ibinbnum
irinbnum
ibadvnum
irinbinjnum
ibinbinjnum

number of blues in blue
number of reds in blue
number of blues within advance range
number of injured reds
number of injured blues

//....»..••*.
//
//
//
//
//
//
//
//
//
//
ibinbnum = 0;
irinbnum = 0;
ibadvnum = MAXISAAOTOM;
irinbinjnum = 0;
ibinbinjnum = 0;

if (blue„command.blue_command_flag == 1 && // if command flag is set
blue_command.blue_command[i] s== 2) { //if ith ISAACA is a local commander

BLUE_COMMAND_SENSOR(&ibinbnum, fcirinbnum, Sibadvnum, Sirinbinjnum, &ibinbinjnum,
i, &blue_command, &red, fcblue, ilblrinb);

)
else{ // use function for subordinate ISAACA

BLUE_SENSOR(&ibinbnum, &irinbnum, fcibadvnum, &irinbinjnum, &ibinbinjnum, i,
&red, tblue, ilblrinb);

}

Adapt blue weights; i.e. determine values for blue.wlblue, blue.w2blue,
blue.w3blue, blue.w4blue, blue.w5blue, blue.wSblue to be used for this time step

(blue_command.blue_command_flag == 0 | |
blue_command.blue_command_flag == 1 && blue_command.blue_command[i] < 2){

ADAPT_BLUE_ISAACA_WEIGHTS{i, ibinbnum, irinbnum, ibadvnum, &blue_command,
&blue);

Are communications to be used between ISAACAs?

if (blue_command.blue_command_flag == 1 && blue_command.blue_command[i] == 2){
ADAPT_BLUE_LC__WEIGHTS(i, ibinbnum, irinbnum, ibadvnum, &blue_command,

&blue);
}

if (blue_GC.blue_GC_flag == 1){
ADAPT_BLUE_GC_WEIGHTS(i, ibinbnum, irinbnum, ibadvnum, &blue„GC,

&blue_command, tblue) ,-
)
//...................,,........... »
//
//
//

if (blue.blue_COMM_flag != 0) { // if COMMs 'on' then get COMM data
BLUE_C0MM_INF0(i, ired, Sblue);

}

//..........
//
// Compute expected penalty for each possible move;
// isaac's move will be into square with least penalty
//
//*"**** * **** " * ****
igoalflag=0; // if remains equal to 0 then goal not reached

//**** * «-
//
// Initialize minimum sum value
// //
zmin = (float)(99999.);

293

Appendix C: Source Code for ISAAC

// get movement range
imbr = blue.ibluemoverangeti];
if (blue.bstatusli] == 1) imbr = 1; // if injured, make sure max range equals 1

if (blue.blue_COMM_flag == 1) { // use 'COMM' routine
zmin = COMPUTEBLUEPENALTY_COMM(i, imbr, iigoalflag, irinbinjnum, ibinbinjnum,

zmin, iflag, z, &red_command, &blue_command,
Sbattle, &red, &blue);

>
else{

if (blue_GC.blue_GC_flag == 0){
zmin = COMPUTEBLUEPENALTY(i, imbr, sigoalflag, irinbinjnum, ibinbinjnum,

zmin, iflag, z, &red_command, &blue_command,
sbattle, Sred, sblue);

>
else{

zmin = COMPUTEBLUEPENALTY_GC(i, imbr, iigoalflag, irinbinjnum, ibinbinjnum,
zmin, iflag, z, &red_GC, &blue_GC, &red_command,
&blue_command, fibattle, &red, fcblue);

}
)
if (igoalflag == 2) {

igoal = 2;
goto goal;

}

//.»•.•«..«».. **
//
// If zmin = 99999 then there are no viable moves —> do nothing
// //............
if (zmin == 99999.){
//
//do nothing
//

if (imbr == 1){
imove = 5;

}
else{

imove = 13 ;
)

}
else{
/y...

//
// See what possible local moves correspond to zmin
// //........

imc = 0;
for (imx = -imbr; imx <= imbr; ++imx) {

for (imy = -imbr; imy <= imbr; ++imy) {
if (iflaglimx + 2][imy + 2] == 1 &&

z[imx + 2][imy + 2] == zmin)(
// add another candidate move to count
+-t-imc;
// select candidate move
if (imbr == 1){

//
// 1 = (-1.+1) | 2 = (0,+l) | 3 » (+1,+1)
//
// 4 = (-1,0) | 5 = (0,0) | 6 = (+1,0)
//
// 7 = (-1,-1) | 8 = (0,-1) | 9 = (+1,-1)
//
imovecandlimc] = imx + 5 - 3 * imy;

)
else{

//
// 1 = (-2,+2) | | 5 = (+2,+2)
//
// | 13 = (0,0) |
//
// 21 = (-2,-2) | | 25 = (+2,-2)
//
imovecandlimc] = imx + 13 - 5 * imy;

)

)
)

)

//*****
//
// Actual move is randomly selected from among the imc candidates
//

if (imc == 1){
imove = imovecand [11;

)
else(

zmoveprob = (float) (0.0001 * getrandomd, 10000,&idum)) ,-
for (im=l; im<imc+l; ++im) (

if (zmoveprob > (float)(im - 1) / (float)(imc) &&
zmoveprob <= (float)(im) / (float)(imc))(
imove = imovecand[im];

)

294

Appendix C: Source Code for ISAAC

}
}

} // end if zmin=99999

// *********** ************** **** ***
//
// Move red to new square for which penalty is minimum
//

MOVEBLUE <i, imbr, imove, Stbattle, fcblue);

} // end if blue.bstatus[i]!=0 test

} // end i = 1 to blue.ibluenum loop

goto start;

/;******************* *********** ************ **.
//
// Run is terminated
// // ******** ************* ***

goal:
if (battle.ioutdata > 1){

fclose(outdatafile);
if ((battle.itermcond — 2 && itime == iternum) j]

igoal == 3){
_getvideoconfig(&vc };
if (vc.numxpixels < 641) { // then use VGA value

„setviewport{200,455,525,465);
_clearscreen(_GVIEWPORT);
_setviewport(1,1,639,479);
_moveto(205, 455);
_setcolor(14 };
_setgtextvector{ 1, 0);
_outgtext(" Run Complete");
battle. default_speed = 2;
goto wait;

)
else{

_setviewport(260,575,680,590);
_clearscreen{ „GVIEWPORT);
^setviewportd,1,799,599) ;
_moveto(270, 575);
_setcolor(14) ,-
_setgtextvector(1, 0);
_outgtext(" Run Complete");
battle.default_speed = 2;
goto wait;

)
buffer = _getch();
if (buffer == 'r') {

// set default trace to no trace
itrace = 0;

// initialize squad number to display on screen
red.display__red_squad = 1;
blue.display_blue_squad = 1;
battle.squad_color„flag = 0;

// Re-seed random number generator
idum=-31415926;
zran=ranl(&idum);

// reset command structure coloring flags
red_command.red_subordinate_color_flag = 0;
blue_command.blue_subordinate_color_flag = 0;

// initialize for re-run
goto changeoption,-

)
else{

_clearscreen(_GCLEARSCREEN);
goto startagain;

}

}
}

if (igoal==l){
_getvideoconfig(&vc);
if (vc.numxpixels < 641) { // then use VGA value

_setviewport{200,455,'525,465) ;
_clearscreen(_GVIEWPORT) ,-
_setviewport(l,1,639,479);
_moveto{ 205, 455);
_setcolor(14);
_setgtextvector (1, 0) ,-

_outgtext(" Run Complete...RED attains goal");
battle.default_speed = 2;
goto wait;

)
else{

_setviewport(260,575,680,590);
_clearscreen(„GVIEWPORT);
_setviewport(1,1,799,599);

295

Appendix C: Source Code for ISAAC

)

_movet0(270, 575);
_setcolor{ 14) ;
_setgtextvector{ 1, 0);
_outgtext(" Run Complete — RED attains goal");
battle.default_speed = 2;
goto wait;

buffer = _getch();
if {buffer == 'r1) {

// set default trace to no trace
itrace = 0;

// initialize squad number to display on screen
red.display_red„squad = 1;
blue.display_blue„squad = 1;
battle.squad_color_flag = 0;

// Re-seed random number generator
idum=-31415926;
zran=ranl{&idum);

// reset command structure coloring flags
red_command.red_subordinate_color_flag = 0;
blue_command.blue_subordinate_color_flag = 0;

// initialize for re-run
goto changeoption;

}
else{

_clearscreen(_GCLEARSCREEN),-
goto startagain;

)
}
else{

if {igoal == 2){
_getvideoconfig{ &vc);
if {vc.numxpixels < 641) { // then use VGA value

_setviewport{200,455,525,465);
_clearscreen{ „GVIEWPORT);
_setviewport{1*1/639,479);
_moveto(205, 455);
_setcolor(14);
_setgtextvector{ 1, 0) ,-
_outgtext("Run Complete...BLUE attains goal");
battle.default_speed = 2;
goto wait;

}
else{

_setviewport(260,575,680,590);
_clearscreen{ „GVIEWPORT);
_setviewport(1,1,799,599);
_moveto(270, 575);
_setcolor{ 14);
„setgtextvector { 1, 0),-
_outgtext{"Run Complete — BLUE attains goal");
battle.default_speed = 2;
goto wait;

)
buffer = _getch{);
if {buffer == 'r') {

// set default trace to no trace
itrace = 0;

// initialize squad number to display on screen
red.display_red_squad = 1;
blue.display_blue_squad = 1;
battle.sguad_color_flag = 0;

// Re-seed random number generator
idum=-31415926;
zran=ranl{&idum);

// reset command structure coloring flags
red_command.red_subordinate_color_flag = 0;
blue_command.blue_subordinate„color„flag = 0;

// initialize for re-run
goto changeoption;

}
else{

_clearscreen{ „GCLEARSCREEN);
goto startagain;

}

)
//** ********* ****** **.******.*«»
//
// Playback previously recorded run
// //**********.*.*.*** *.***„*********.**.*.********.

playback:

296

Appendix C: Source Code for ISAAC

_unregisterfonts{);
_registerf onts ("oemlO.FON");
strcatl strcatl strcpyl list, "t"), "oeinlO"), "'");
strcatl list, "h30w24bv");
_getfontinfo(&fi) ,-
_setfont(list);
_settextposition(13, 35);
printft"Plot-data file name ? ");
scanf("%s", Splotfilename);

playback_option:

if (!_setvideomode(_SRES16COLOR)){
_setvideomode I _VRES16COLOR);

- _clearscreen(_GCLEARSCREEN) ;
>

playagain:

playterm = PLAYBACKIplotfilename, fcidata, filename, fcbattle.ichoice);

if (playterm == 2){ // then read-in new input data
goto read_data;

}

if {playterm == 3){ // then play-back new file
goto playback_option;

}

„getvideoconfig(tvc);

if (vc.numxpixels < 641) { // then use VGA value
_setviewport(200,455,525,465);
_clearscreen(_GVIEWPORT);
_setviewport(l,1,639,479);
jtiovetol 205, 455) ;
_setcolor (14) ;
_setgtextvector (1, 0);
if (playterm == 1)(

_outgtext(" Run Terminated") ;
)
else{

if (playterm == 0) {
_outgtext(" Run Complete");

)
)

>
else{

_setviewport(260,575,680,590) ;
_clearscreen (_GVIEWPORT) ;
_setviewport(1,1,799,599);
_moveto(270, 575);
_setcolor(14);
_setgtextvector(1, 0);
if (playterm == 1){

_outgtext(" Run Terminated") ;
)
else{

if (playterm == 0) {
_outgtext(" Run Complete");

)
)

)
opwait:

buffer = _getch();
if (buffer == 'r') (

goto playagain;
}
else(

if(buffer=='d' || buffer=='p' || buffer=='q') {
goto options;

)
else(

goto opwait;
)

)
}

//
//
// Allocate Memory for Structures
// //.........
struct red_GC_parameters *get_r_GC(void)
(

struct red_GC_parameters *p ;

if ((P = _fmalloc(sizeof(struct red_GC_parameters))) == NULL) {
_clearscreen(_GCLEARSCREEN);
printft "Insufficient Memory to Run");
exit(O);

)
return p;

297

Appendix C: Source Code for ISAAC

struct blue_GC_parameters *get_b_GC {void)
(

struct blue_GC_parameters *p ;

if ((p = _fmalloc{ sizeof (struct blue_GC_parameters))} == NULL) {
_clearscreen(_GCLEARSCREEN) ;
printfl "Insufficient Memory to Run");
exit(O);

)
return p;

)
struct red_command_parameters *get_r_com{void)
{

struct red_command_parameters *p ;

if ((p = _fmalloc(sizeof(struct red_command_parameters))) == NULL) {
_clearscreen(_GCLEARSCREEN);
printf("Insufficient Memory to Run");
exit(O) ;

)
return p;

)
struct blue_command_parameters *get_b_com (void)
{

struct blue_command_parameters *p ;

if ((P = _fmalloc(sizeof(struct blue_command_parameters))) == NULL) {
_clearscreen (_GCLEARSCREEN);
printfl "Insufficient Memory to Run");
exit(O);

}
return p;

>
struct battle_parameters *get_bat(void)
{

struct battle_parameters *p ;

if ((p = _fmalloc(sizeof (struct battle_parameters))) == NULL) {
_clearscreen (_GCLEÄRSCREEN) ;
printf("Insufficient Memory to Run");
exit(O);

)
return p;

>
struct red_parameters *get_red (void)
{

struct red_parameters *p;

if ((p = _fmalloc(sizeof (struct red_parameters))) == NULL) {
_clearscreen (_GCLEARSCREEN) ;
printft "Insufficient Memory to Run");
exit(O);

}
return p;

)
struct blue__parameters *get_blue(void)
(

struct blue_parameters *p;

if ((P = _fmalloc(sizeof (struct blue_parameters))) == NULL) {
_clearscreen(_GCLEÄRSCREEN);
printft "Insufficient Memory to Run");
exit(O);

}
return p;

)
struct statistics *get_stats(void)
{

struct statistics *p;

if ((P = _fmalloc(sizeof(struct statistics))) == NULL) (
_clearscreen (_GCLEARSCREEN) ;
printft "Insufficient Memory to Run");
exit(O);

)
return p;

298

Appendix C: Source Code for ISAAC

Function Modules

A short description of each function module that appears in ISAAC'S
main function (see Main Module above) is given in table 12.

Table 12. ISAAC functions
Function File Description

ABS_FLOAT ISAACP.C returns absolute value of a float

ADAPT_BLUE_GC_WEIGHTS ISAAC_C.C adapts blue global commander weights

ADAPT_BLUE_ISAACA_WEIGHT ISAAC_C.C adapts blue ISAACA weights

ADAPT_BLUE_LC_WEIGHTS ISAAC_C.C adapts blue local commander weights

ADAPT_RED_GC_WEIGHTS ISAAC_.CC adapts red global commander weights

ADAPT_RED_ISAACA_WEIGHTS ISAAC_C.C adapts red ISAACA weights

ADAPT_RED_LC_WEIGHTS ISAAC_C.C adapts red local commander weights

BLUE_COMMAND_SENSOR ISAAC_D.C determines what the ith blue local
commander sees

BLUE_COMM_INFO ISAAC_H1.C determines what ISAACAs are within
blue's COMM range

BLUE_GLOBAL_COMMAND ISAAC_S2.C blue global commanders set 'direction'
goals for LCs

BLUEINRED ISAAC_D.C determines number of blues within red
sensor

BLUE_LOCAL_COMMAND_l ISAACJ.C blue local commanders set local goals for
3-by-3 patch

BLUE_LOCAL_COMMAND_2 ISAAC_K2.C blue local commanders set local goals for
5-by-5 patch

BLUE_PROMOTIONS ISAAC_H2.C adjudicate blue local commander
promotions

BLUE_SENSOR ISAACJD.C determines what the ith blue ISAACA
sees within sensor

BLUE_SWATH_AREA ISAAC_G\C calculates the area of each of 16 'swaths'
centered at the current (x,y) coordinates
of blue local commander

BLUE_SWATH_DENSITY ISAAC_R2.C calculates the density of red ISAACAs in
each of 16 swaths centered at the current
(x,y) coordinates of blue local
commander

CENTER_MASS ISAAC_T5.C returns the center-of-mass of red, blue
and total forces

CLUSTER.l ISAAC_T3.C returns the distribution of clusters (D=l)
and average size

CLUSTER_2 ISAAC_T4.C returns the distribution of clusters (D=2)
and average size

299

Appendix C: Source Code for ISAAC

COMBAT ISAACJLC adjudicates combat (assuming ALL
enagements)

COMBAT.2 ISAACJ.C adjudicates combat (assuming
enagement threshold set)

COMPUTEBLUEPENALTY ISAAC_E1.C calculates penalty for each blue move
possibility

COMPUTEBLUEPENALTY_COMM ISAAC.F.C calculate blue-move penalty assuming
COMM is 'on'

COMPUTEBLUEPENALTY_GC ISAAC_E3.C calculates penalty for blue assuming GC
flagon

COMPUTEREDPENALTY ISAAC_E1.C calculates penalty for each red move
possibility

COMPUTEREDPENALTY_COMM ISAAC_F.C calculate red-move penalty assuming
COMM is 'on'

COMPUTEREDPENALTY_GC ISAAC_E2.C calculates penalty for red assuming GC
flagon

GETRANDOM ISAAC_P.C get a random number between a and b

GOAL_STATS ISAAC_T5.C returns the number of ISAACAs near
enemy flag

INITIALIZE_nELD ISAAC_B1.C initialize battlefield parameters

INPUT_FTLE_DATA ISAAC_M1.C read input from data file

INPUT_SCREEN_DATA ISAAC_M2.C input data from screen prompts

INTERPOINT_DIST ISAAC_T1.C calculates R-R, B-B, R-B and R,B-goal
distance dists

MOMENT ISAAC_T3.C returns mean ave, ave deviation and
standard deviation

MOVEBLUE ISAAC_G.C moves all blue ISAACAs (updates lattice
positions)

MOVERED ISAAC_G.C moves all red ISAACAs (updates lattice
positions)

NEIGHBORS ISAAC_T5.C returns the average number of ISAACAs
at distance D

NOMEM ISAAC_P.C returns 'insufficient memory to run'
message and exits

PLAYBACK ISAAC_O.C "plays-back" previously recorded *.out
files

PROMPT_SCREEN ISAAC_N.C display choices for 'on-the-fly' parameter
changes

RANI ISAAC_P.C uniform random generator from
'Numerical Recipes' (Cambridge
University Press)

RED_COMMAND_SENSOR ISAAC_D.C determines what the ith red local
commander sees

RED_COMM_INFO ISAAC_H1.C determines what ISAACAs are within
red's COMM range

300

Appendix C: Source Code for ISAAC

RED_GLOBAL_COMMAND ISAAC_S1.C red global commanders set 'direction'
goals for LCs

REDINBLUE ISAAC_D.C determines number of reds within blue
sensor

RED_LOCAL_COMMAND_l ISAAC_J.C red local commanders set local goals for
3-by-3 patch

RED_LOCAL_COMMAND_2 ISAAC_K1.C red local commanders set local goals for
5-by-5 patch

RED_PROMOTIONS ISAAC_H2.C adjudicate red local commander
promotions

RED_SENSOR ISAACD.C determines what the ith red ISAACA sees
within sensor

RED_SWATH_AREA ISAAC.Q.C calculates the area of each of 16 'swaths'
centered at the current (x,y) coordinates
of red local commander

RED_SWATH_DENSITY ISAAC_R1.C calculates the density of blue ISAACAs in
each of 16 swaths centered at the current
(x,y) coordinates of red local
commander

SCREENDATA ISAAC_B2.C dump data to graphics screen

SIGNUM ISAAC_P.C sign (+1,-1, or 0) of a float

SPATIAL_ENTROPY ISAAC_T2.C computes spatial entropy for 4x4, 8x8
and 16x16 blocks

UPDATEPICTURE ISAAC_L.C update graphics screen ith new red and
blue positions

WRITE_1_CLUSTER ISAAC_M4.C Write cluster distributions (calculated
using D=l) to files (stats_10.dat,
stats_ll.dat)

WRITE_2_CLUSTER ISAAC_M4.C Write cluster distributions (calculated
using D=l) to files (stats_12.dat,
stats_13.dat)

WRITE_DATA_FILE ISAAC_M3.C Write current parameter values to data
file

WRITEJNTERPOINT ISAAC_M4.C Write interpoint distance distributions to
file (stats_2.dat,... stats_8.dat)

WRITE_OUT_nLE ISAAC_M3.C Open and write to 'play-back' (*.out) file

WRITE_RR_NEIGHBORS ISAAC_M4.C Write red-in-red distributions to file
(stats_14.dat)

WRITE_BB_NEIGHBORS ISAAC_M4.C Write blue-in-blue distributions to file
(stats_15.dat)

WRITE_RB_NEIGHBORS ISAAC_M4.C Write red-in-blue distributions to file
(stats_16.dat)

WRITE_BR_NEIGHBORS ISAAC_M4.C Write blue-in-red distributions to file
(stats_17.dat)

301

Appendix C: Source Code for ISAAC

WRITE_AR_NEIGHBORS

WRITE_AB_NEIGHBORS

ISAAC M4.C

ISAAC M4.C

Write all-in-red distributions to file
(stats_18.dat)

Write all-in-blue distributions to file
(stats_19.dat)

302

Appendix C: Source Code for ISAAC

Appendix D: Source Code for ISAAC_GA
Below is the ANSI C source code for version 1.5.1of ISAAC_GA (i.e.,
the stand-alone Genetic Algorithm evolver; see Table 4). Screen and
graphics functions are those defined in graph.h of Microsoft's Visual
C/C++ compiler for DOS (vl.52). Note that ISAAC.GA uses a slightly
older version of ISAAC'S core engine than the one listed in appendix C.
Specifically, the version of ISAAC that is embedded within ISAAC_GA
allows only one squad per side and excludes all command and control
structures. All auxiliary functions are the same as those listed in Table 12.

Header File

#define ISAACVERSION "ISAAC-GA / Version 1.5.1"
#define MAXFIELDSIZE101
#define MAXSENSORRANGE 10
#define MAXINTERPOINTDIST (int) (1.414214 * MAXFIELDSIZE)
#define MAXISAACNUM126
#define MAXNEIGHBORNUM 2*MAXISAACNUM+1
#define TERRAINMAXNUM 25
«define MAXCLUSTERSIZE 2*MAXISAACNUM+1
#define POPSIZE 40 // maximum population size
fdefine INIT_COND_MAX 50 // number of ICs to average over in GA calculation

Structures

//*
//
//
//
//
//
//
//AA

struct mission_objective // define a member template of the population

- mission_objective
- battle_parameters
- red_parameters
- blue_parameters

: mission objective measures
: battlefield/combat parameters
: red ISAACA force parameters
: blue ISAACA force parameters

AAAAAAAAAAAAAAAAAAAAAAA

double alpha_l;
double alpha_2;
double alpha_3;
double alpha_4;
double alpha_5;
double alpha_6;
double alpha_7;
double alpha_8;
double alpha_9;
double alpha_10;
double time_to_goal[INIT_COND_MAX+l];
double total_friendly_loss[INIT_COND_MAX+l];
double total_enemy_loss[INiT_COND_MAX+13;
double survival_ratio[INIT_COND_MAX+l];
double red_CM_to_BF_distpNIT_COND_MAX+l];
double blue_CM_to_RF_distpNIT_COND_MAX+l];

// weight for "time to goal" measure
// weight for "total friendly loss" measure
// weight for "total enemy loss" measure
// weight for "ratio between surviving red and blue ISAAC As" measure
// weight for "distance between red CM and blue flag" measure
// weight for "distance between blue CM and red flag" measure
// weight for "number of blue near red flag" measure
// weight for "number of red near blue flag" measure
// weight for "number of red fratricide hits" measure
// weight for "number of blue fratricide hits" measure
// time that first friendly ISAAC arrives at enemy flag
// total number of friendly IS A AC As killed or injured
// total number of enemy ISAAC As killed or injured
// ratio between surviving RED and BLUE ISAACAs (R/(R0*B))
// distance between red CM and blue flag
// distance between blue CM and red flag

303

Appendix E: STATS_X.dat Data Fields

double red_near_BF[INIT_COND_MAX+l3;
double blue_near_RF[INIT_COND_MAX+l];
double red_fraWddepNTr_COND_MAX+l];
double blue_fratricide[INIT_COND_MAX+l];
double near_range;
double near_range_num;
double r_CM_f;
};

struct battle_parameters

// number of red IS A AC As near blue flag
// number of blue ISAAC As near red flag
// number of red fratricide hits
// number of blue fratricide hits
//the radius that defines "near" for red_near_BF and blue_near_RF
// number of friendly IS A AC As that must be within near_range of BF
// fractional distance threshold such that if r_CM/max < r_CM_f then stop

short goalcolor;
short boxcolor;
int default_speed;
int ioutdata;
int ichoice;
int isize;
int initdist;
int ibattlebox_red_length;
int ibattlebox_red_width;
int ibattlebox_red_cen_x;
int ibattlebox_red_cen_y;
int ibattlebox_Mue_length;
int ibattlebox_blue_width;
int ibattlebox_blue_cen_x;
int ibattlebox_bme_cen_y;
int itermcond;
int imove_selection;
int max_combat_flag;
int terrainjflag;
int terrain_num;
int terrain_size[TERRAINMAXNUM];

//=1 if run is FAST, =2 if run is SLOW
// output l=screen only; 2=file only; 3=both
// run flag: l=run engine; 2=playback file
// user specified battlefield size
// initial force distribution flag
// length of box containing initial distribution
// width of box containing initial distribution
// x-coodinate of the center of red's initial box
// y-coodinate of the center of red's initial box
// length of box containing initial distribution
// width of box containing initial distribution
// x-coodinate of the center of blue's initial box
// y-coodinate of the center of blue's initial box
// termination condition flag (l=goal; 2=none)
// 1 = FIXED order; 2 = random order
// 1=# of sim engmnts lmtd; 0=no limit
// 1 = terrain to be used; 1 = no
// number of terrain block
// radius of ith terrain block

int terrain_center_x[TERRAINMAXNUM]; // x-coordinate of the the ith block's center
int terrain_center_y[TERRAINMAXNUM]; // y-coordinate of the the ith block's center
int ioccupation[MAXFIELDSIZE][MAXFIELDSIZE]; // =2 if terrain, 1 if occupied, else 0
int reconstitution_flag; // if 0 then no reconstitution, else reconstitution on
int red_fratricide_flag; // =1 if red ISAACAs can accidentally kill red ISAACAs, else 0
int blue_fratricide_flag; // =1 if blue ISAACAs can accidentally kill blue ISAACAs, else 0
int red_frat_rad; // radius surrounding targeted blue within which reds can be killed
int blue_frat_rad; // radius surrounding targeted red within which blues can be killed
int red_frat_count; // cummulative total of red fratricide 'hits'
int blue_frat_count; / / cummulative total of blue fratricide 'hits'
float red_frat_prob; / / probability that red is accidentally shot by red
float blue_frat_prob; // probability that blue is accidentally shot by blue
};

struct red_parameters
{
short redcolor;
int redgoalx;
int redgoaly;
int redx[MAXISAACNUM];
int redy[MAXISAACNUM];
int rseer[MAXISAACNUM];
int rseeb[MAXISAACNUM];
int rseercomm[MAXISAACNUM];
int rseebcomm[MAXISAACNUM];
int rstatus[MAXISAACNUM];
int ibinr[MAXISAACNUM];
float wlred[MAXISAACNUM];
float w2red[MAXISAACNUM];
float w3red[MAXISAACNUM];
float w4red[MAXISAACNUM];
float w5red[MAXISAACNUM];
float w6red[MAXISAACNUM];

// x coordinate of red goal
// y coordinate of red goal
// x-coordinate of ith red ISAAC
// y-coordinate of ith red ISAAC
// =1 if red sees red and =0 otherwise
// =1 if red sees blue and =0 otherwise
// =1 if red sees red via COMM link
// =1 if red sees blue via COMM link
// =1 if alive, 1 if injured, 0 if dead
// number of blue isaacs in red isaac range
// active weight for red —> alive red
// active weight for red —> alive blue
// active weight for red —> injured red
// active weight for red —> injured blue
// active weight for red -> red goal
// active weight for red —> blue goal

304

Appendix E: STATS_X.dat Data Fields

int irednum;
int irsrange;
int iredfrange;
float zshotbluebyreddef;
int iperred;
float wlrdeff_a;
float w2rdeff_a;
float w3rdeff_a;
float w4rdeff_a;
float w5rdeff_a;
float w6rdeff_a;
float wlrdeffj;
float w2rdeff_i;
float w3rdeff_i;
float w4rdeff_i;
float w5rdeff_i;
float w6rdeff_i;
float red_w_a_max[MAXISAACNUM];
float red_w_i_max[MAXISAACNUM];
float wlreddef_a[MAXISAACNUM];
float w2reddef_a[MAXISAACNUM];
float w3reddef_a[MAXISAACNUM];
float w4reddef_a[MAXISAACNUM];
float w5reddef_a[MAXISAACNUM];
float w6reddef_a[MAXISAACNUM];
float wlreddef_i[MAXISAACNUM];
float w2reddef_i[MAXISAACNUM];
float w3reddef_i[MAXISAACNUM];
float w4reddef_i[MAXISAACNUM];
float w5reddef_i[MAXISAACNUM];
float w6reddef_i[MAXISAACNUM];
int iredmovecont;
int iradv_a[MAXISAACNUM];
int iradv_i[MAXISAACNUM];
int iradvrange[MAXISAACNUM];
int irclus_a[MAXISAACNUM];
int irdus_i[MAXISAACNUM];
int ircom_a[MAXISAACNUM];
int ircom_i[MAXISAACNUM];
int iradvrange_min;
int iradvrange_max;
int iradv_a_min;
int iradv_a_max;
int iradv_i_min;
int iradv_i_max;
int irclus_a_min;
int irclus_a_max;
int irclus_i_min;
int irclus_i_max;
int ircom_a_min;
int ircom_a_max;
int ircom_i_min;
int ircom_i_max;
float zrfromnnindist_a;
float zrfromrgmindist_a;
float zbfromrmindist_a;
float zrfromrmindist_i;
float zrfromrgmindistj;
float zbfromrnündist_i;
int iredmoverange;
int red_max_eng_num;
int red_COMM_flag;
int ircommrange;
float rcommweight;
float rcommweight_def;

// total number of red ISAACs
// red sensor range
// red fire range
// probability that a red ISAAC shoots a blue
// input flag for initial personality type
// default weight for alive red —> alive red
// default weight for alive red —> alive blue
// default weight for alive red -> injured red
// default weight for alive red -> injured blue
// default weight for alive red -> red goal
// default weight for alive red —> blue goal
// default weight for injured red —> alive red
// default weight for injured red —> alive blue
// default weight for injured red —> injured red
// default weight for injured red —> injured blue
// default weight for injured red —> red goal
// default weight for injured red —> blue goal
// maximum absolute value of default red alive weights
// maximum absolute value of default red injrd weights
// default weight for alive red —> alive red
// default weight for alive red —> alive blue
// default weight for alive red —> injured red
// default weight for alive red —> injured blue
// default weight for alive red —> red goal
// default weight for alive red —> blue goal
// default weight for injrd red —> alive red
// default weight for injrd red —> alive blue
// default weight for injrd red —> injured red
// default weight for injrd red —> injured blue
// default weight for injrd red —> red goal
// default weight for injrd red —> blue goal
// red movement constraint flag
// alive red advance threshold
// injured red advance threshold
// range in which red # > threshold to advance
// alive red cluster threshold
// injured red cluster threshold
// alive red combat threshold
// injured red combat threshold
// min red advance threshold for random constraints
// max red advance threshold for random constraints
// min alive red advance threshold for ran constraints
// max alive red advance threshold for ran constraints
// min injrd red advance threshold for ran constraints
// max injrd red advance threshold for ran constraints
// min alive red cluster threshold for ran constraints
// max alive red cluster threshold for ran constraints
// min injrd red cluster threshold for ran constraints
// max injrd red cluster threshold for ran constraints
// min alive red combat threshold for ran constraints
// max alive red combat threshold for ran constraints
// min injrd red combat threshold for ran constraints
// max injrd red combat threshold for ran constraints
// minimum distance of alive red from red
// minimum distance of alive red from red goal
// minimum distance of alive blue from red
// minimum distance of injured red from red
// minimum distance of injured red from red goal
// minimum distance of injured blue from red
// max movement radius for alive reds
// max # of simul engagements by red
// if = 0 then COMMs NOT used for red, else yes
// red communications range
// red COMM weight (relative to w=l)
// red default COMM weight

305

Appendix E: STATS_X.dat Data Fields

float zrsscale;
int red_clock[MAXISAACNUM];
int red_max_r_time;

struct blue_parameters

// scale factor for multiplying red penalty
// internal red clock (for reconstitution)
// maximum number of 'ticks' before reconstitution

short bluecolor;
int bluegoalx; //
int bluegoaly; //
intbluex[MAXISAACNUM]; //
intbluey[MAXISAACNUM]; //
intbseer[MAXISAACNUM]; //
intbseebfMAXISAACNUMJ; //
intbseercomm[MAXISAACNUM]; //
intbseebcomm[MAXISAACNUM]; //
mtbstatusfMAXISAACNUM]; //
intirinbfMAXISAACNUM]; //
float wlbluefMAXISAACNUM]; //
float w2blue[MAXISAACNUM]; //
float w3blue[MAXISAACNUM]; //
float w4blue[MAXISAACNUM]; //
float w5blue[MAXISAACNUM]; //
float w6blue[MAXISAACNUM]; //
int ibluenum; //
intibsrange; ■ //
int ibluefrange; //
float zshotredbybluedef; //
int iperblue; //
float wlbdeff_a; //
float w2bdeff_a; //
float w3bdeff_a; //
float w4bdeff_a; //
float w5bdeff_a; //
float w6bdeff_a; //
float wlbdefM; //
float w2bdeff_i; //
float w3bdeff_i; //
float w4bdeff_i; //
float w5bdeff_i; //
float w6bdeff_i; //
float blue_w_a_max[MAXKAACNUM];//
float blue_w_i_max[MAXISAACNUM]; //
float wlbluedef_a[MAXISAACNUM],
float w2bluedef_a[MAXISAACNUM].
float w3bluedef_a[MAXISAACNUM],
float w4bluedef_a[MAXISAACNUM];
float w5bluedef_a[MAXISAACNUM];
float w6bluedef_a[MAXISAACNUM];
float wlbluedef_i[MAXISAACNUM];
float w2bluedef_i[MAXISAACNUM];
float w3bluedef_i[MAXISAACNUM];
float w4bluedef_i[MAXISAACNUM];
float w5bluedef_i[MAXISAACNUM];
float w6bluedef_i[MAXISAACNUM];
int ibluemovecont;
int ibadv_a[MAXISAACNUM];
int ibadv_i[MAXISAACNUM];
int ibadvrange[MAXISAACNUM];
int ibclus_a[MAXISAACNUM];
int ibdusJ[MAXISAACNUM];
int ibcom_a[MAXISAACNUM];
int ibcom_i[MAXISAACNUM];
int ibadvrange_min;
int ibadvrange_max;

x coordinate of blue goal
y coordinate of blue goal
x-coordinate of ith blue ISAAC
y-coordinate of ith blue ISAAC
=1 if blue sees red and =0 otherwise
=1 if blue sees blue and =0 otherwise
=1 if blue sees red via COMM link
=1 if blue sees blue via COMM link
=1 if alive, 1 if injured, 0 if dead
number of red isaacs in blue isaac range
active weight for blue -> alive blue
active weight for blue -> alive red
active weight for blue —> injured blue
active weight for blue —> injured red
active weight for blue —> blue goal
active weight for blue —> red goal
total number of blue ISAACs
blue sensor range
blue fire range
probability that a blue ISAAC shoots a red
input flag for initial personality type
default weight for alive blue —> alive blue
default weight for alive blue —> alive red
default weight for alive blue —> injured blue
default weight for alive blue —> injured red
default weight for alive blue —> blue goal
default weight for alive blue —> red goal
default weight for injured blue —> alive blue
default weight for injured blue —> alive red
default weight for injured blue —> injured blue
default weight for injured blue —> injured red
default weight for injured blue —> blue goal
def weight vector for injured blue —> red goal
max absolute value of default blue alive weights
max absolute value of default blue injurd weights

// default weight for alive blue —> alive blue
// default weight for alive blue —> alive red
// default weight for alive blue —> injured blue
// default weight for alive blue —> injured red
// default weight for alive blue —> blue goal
// default weight for alive blue —> red goal
// default weight for injrd blue —> alive blue
// default weight for injrd blue —> alive red
// default weight for injrd blue —> injured blue
// default weight for injrd blue —> injured red
// default weight for injrd blue —> blue goal
// default weight for injrd blue —> red goal
// blue movement constraint flag
// alive blue advance threshold
// injured blue advance threshold
// range within which blue # > threshold to advance
// alive blue cluster threshold
// injured blue cluster threshold
// alive blue combat threshold
// injured blue combat threshold
// min blue advance threshold for random constraints
// max blue advance threshold for random constraints

306

Appendix E: STATS_X.dat Data Fields

int ibadv_a_min;
int ibadv_a_max;
int ibadvJLmin;
int ibadv_i_max;
int ibclus_a_min;
int ibclus_a_max;
int ibclus_i_min;
int ibclus_i_max;
int ibcom_a_min;
int ibcom_a_max;
int ibcom_i_min;
int ibcom_i_max;
float zbfrombmindist_a;
float zbfrombgmindist_a;
float zrfrombmindist_a;
float zbfrombmindist_i;
float zbfrombgmindist_i;
float zrfrombmindist_i;
int ibluemoverange;
int blue_max_eng_num;
int blue_COMM_flag;
int ibcommrange;
float bcommweight;
float bcommweight_def;
float zbsscale;
int blue_clock[MAXISAACNUM];
int blue_max_r_time;

// min alive blue advance threshold for ran constrnts
// max alive blue advance threshold for ran constrnts
// min injrd blue advance threshold for ran constrnts
// max injrd blue advance threshold for ran constrnts
// min alive blue cluster threshold for ran constrnts
// max alive blue cluster threshold for ran constrnts
// min injrd blue cluster threshold for ran constrnts
// max injrd blue cluster threshold for ran constrnts
// min alive blue combat threshold for ran constrnts
// max alive blue combat threshold for ran constrnts
// min injrd blue combat threshold for ran constrnts
// max injrd blue combat threshold for ran constrnts
// minimum distance of alive blue from blue
// minimum distance of alive blue from blue goal
// minimum distance of alive red from blue
/ / minimum distance of injured blue from blue
// minimum distance of injured blue from blue goal
// minimum distance of injured red from blue
// max movement radius for alive blues
// max # of simul engagements by blue
// if = 0 then COMMs NOT used for blue, else yes
// blue communications range
// blue COMM weight (relative to w=l)
// blue default COMM weight
// scale factor for multiplying blue penalty
// internal blue clock (for reconstitution)
// maximum number of 'ticks' before reconstitution

307

Appendix E: STATS_X.dat Data Fields

Main Module

//
// ISAAC_GA.C - Simple Genetic Algorithm 'Evolver' for ISAAC
//
// Adapted from Z. Miohalewicz, GA + Data Structures = EP, Springer-Verlag, 2nd Edition
//
//MS Visual C++ vl.52
// Version 1.5.1
//
// Andy Ilachinski
// Center for Naval Analyses
// 4401 Ford Avenue
// Alexandria, VA 22302
// (703) 824-2045
// ilachina6cna.org
//
//*****************************•***

»include <ga.h> // contains MISSION_OBJECTIVE, BATTLE, RED and BLUE parameter structures
»include <string.h>
»include <float.h>
»include <math.h>
»include <stdlib.h>
»include <stdio.h>
»include <conio.h>
»include <time.h>
»include <graph.h>
»include <io.h>
»include <malloc.h>
»include <time.h>
»include <process.h>

»define CHROM_LENGTH_MAX 45 // number of genes in chromosome defining an ISAACA personality
»define PXOVER 0.8 // probability of crossover
»define PMUTATION 0.1 // probability of mutation

struct genotype // define a member template of the population
{
double gene[CHRONLLENGTH_MAX+l]; //a string of variables
double fitness; // genotype's fitness
double upper[CHROM_LENGTH_MAX+l],-// genotype's variables upper bound
double lower [CHROM_LENGTH_MAX+l];// genotype's variables lower bound
double rel_fitness; // relative fitness
double cum_fitness; // cumulative fitness

};

//•♦A***

//
// Allocate Memory for Structures
//
//********************•**

struct battle_parameters battle;
struct red_parameters red;
struct blue_parameters blue;
struct genotype population[POPSIZE+1]; // population
struct genotype newpopulation[POPSIZE+l]; // new population to replace the old generation
struct mission_objective mission; // mission objective fitness measure parameters
struct red_parameters red;

//
//
// FUNCTION PROTOTYPES
//
//

void INPUT_FILE_DATA(unsigned char filename[30], struct battle_parameters *batp,
struct red_parameters *redp, struct blue_parameters *bluep, long *idum);

308

Appendix E: STATS_X.dat Data Fields

void WRITE_DATA_FILE(FILE "datafile, struct battle_parameters "batp,
struct red_parameters *redp, struct blue_parameters *bluep);

void WRITE_FITNESS(FILE *ga_stat, struct mission_objective *m, int termination_code,
int max_time_to_goal);

void PROMPTS (void) ;

void WRITE_CHROM_TO_FILE(int g, FILE *ga_stat, int initial_condition_genes_flag);

void SHOW_FITNESS(struct mission_objective *m, int termination_code, int max_time_to_goal);

void SHOW_GRAPHICS(struct battle_parameters *batp, struct red_parameters "redp,
struct blue_parameters *bluep, struct mission_objective *m, int termination_code,
int max_time_to_goal);

void SH0W_CHROMOS0ME(int mem, int initial_condition_genes_flag);

void INITIALIZE_FIELD(struct battle_parameters *batp, struct red_parameters *redp,
struct blue_parameters "bluep, int iflag[5][5], long *idum);

void ADAPT_RED_ISAACA_WEIGHTS (int i, int irinrnum, int ibinrnum, int iradvnum,
struct red_parameters *redp);

void ADAPT_BLUE_ISAACA_WEIGHTS (int i, int ibinbnum, int irinbnum, int ibadvnum,
struct blue_parameters *bluep);

void ADAPTBLUEWEIGHTS(int i, int ibinbnum, int irinbnum, int ibadvnum,
struct blue_parameters "bluep);

void RED_COMM_INFO(int i, struct red_parameters *redp, struct blue_parameters "bluep);

void BLUE_COMH_INFO(int i, struct red_parameters *redp, struct blue_parameters "bluep);

void MOVERED (int i, int imrr, int imove, struct battle_parameters *batp,
struct red_parameters *redp);

void MOVEBLÜE (int i, int imbr, int imove, struct battle_parameters *batp,
struct blue_parameters *bluep);

void RED_SENSOR(int *irinrnum, int "ibinrnum, int "iradvnum, int "ibinrinjnum,
int *irinrinjnum, int i, struct red_parameters "redp, struct blue_parameters *bluep,
int **ilblbinr);

int BLÜEINREDt int i, struct red_parameters *redp, struct blue_parameters *bluep,
int **ilblbinr);

void BLUE_SENSOR(int "ibinbnum, int "irinbnum, int "ibadvnum, int "irinbinjnum,
int "ibinbinjnum, int i, struct red_parameters "redp,
struct blue_parameters "bluep, int ""ilblrinb) ,-

int REDINBLUEf int i, struct red_parameters "redp, struct blue_parameters "bluep,
int ""ilblrinb);

float COMPUTEREDPENALTY(int i, int imrr, int "igoalflag, int irinrinjnum, int ibinrinjnum,
float zmin, int iflag[5][5], float z[5][5], struct battle_parameters "batp,
struct red_parameters "redp, struct blue_parameters "bluep);

float COMPUTEREDPENALTY_COMM(int i, int imrr, int "igoalflag, int irinrinjnum,
int ibinrinjnum, float zmin, int iflag(5][5], float z[5][5),
struct battle_parameters "batp, struct red_parameters "redp,
struct blue_parameters "bluep);

float COMPOTEBLUEPENALTY(int i, int imbr, int "igoalflag, int irinbinjnum, int ibinbinjnum,
float zmin, int iflag[5][5], float z[5]t5], struct battle_parameters "batp,
struct red_parameters "redp, struct blue_parameters "bluep);

float COMPUTEBLUEPENALTY_COMM(int i, int imbr, int "igoalflag, int irinbinjnum,
int ibinbinjnum, float zmin, int iflag[5][5], float z[5][5],
struct battle_parameters "batp, struct red_parameters "redp,
struct blue_parameters "bluep);

void COMBAT(struct battle_parameters "batp, struct red_parameters "redp,
struct blue_parameters "bluep, long "idum, int ""ilblbinr, int ""ilblrinb);

void C0MBAT_2(struct battle_parameters "batp, struct red_parameters "redp,
struct blue_parameters "bluep, long "idum, int ""ilblbinr, int ""ilblrinb);

void CENTER_MASS(int iterations, struct mission_objective *m, struct red_parameters "redp,
struct blue_parameters "bluep, int *termination_flag, int max_CM_dist);

309

Appendix E: STATS_X.dat Data Fields

void GOAL_STATS(int iterations, struct mission_objective *m, int isize, struct red_parameters *redp,
struct blue_parameters *bluep, int *termination_flag, int blue_in_RG_max, int red_in_BG_max);

void SCREEN_UPDATE(int itime, int iterations, int mem, int generation, int num_generations,
int num_initial_conds, int max_time_to_goal, double avg, double best_val,
double worst_val, double *best_fitness_gen, double *worst_fitness_gen,
double pf);

void DECODE_BEST(struct red_parameters *redp, int min_dist_genes_flag,
int initial_condition_genes_flag);

float abs_float(float x),-

float getrandomtint x, int y, long *idum);

float ranldong *idum),-

int SIGN(double x);

void nomem();

void initialize (void) ,-
double randval(double, double);
void penalty(struct mission_objective *m, struct red_parameters *redp);
void keep_the_best(int CHROM_LENGTH);
void elitist(int CHROM_LENGTH);
void select(void);
void crossover (int CHROM_LENGTH) ,-
void Xover(int,int,int CHROM_LENGTH);
void swap(double *, double *);
void mutate(int CHROM_LENGTH);
void progress_report(int generation, FILE* ga_stat, double *best_val, double *worst_val, double *avg,

double best_fitness_gen, double worst_fitness_gen);

//***
//
// MAIN: RUN ISAAC
//
//***********************
void main!)
(

******************************** ****************************

int i, j;
int imx, imy;
int ired, iblue;
int im, imc;
int igoalflag;
int imove;
int ibinrnum;
int irinbnum;
int irinrnum;
int ibinbnum;
int iradvnum;

int ibadvnum;
int irinrinjnum;
int ibinbinjnum;
int irinbinjnum;
int ibinrinjnum;
int itime;
int actual_time;
int termination_flag;
int imovecand[26];

int iflag[5][5];

// loop variables
// loop variables

//
// if
//
//

labels for intermediate candidte moves
1 then red wins; if =2 then blue wins

labels selected move (1 <= imove <= 9)
number of blue ISAACS in red sensor range

// number of red ISAACS in blue sensor range
// number of red ISAACS in red sensor range
// number of blue ISAACS in blue sensor range
// threshold number of reds to advance

// threshold number of blues to advance
// number of injured red in red sensor
// number of injured blue in blue sensor
// number of injured red in blue sensor
// number of injured blue in red sensor
// time counter

// =1 if number of red near BF > threshold is to terminate run
// intermediate move candidates from which
// an ISAAC will choose an actual move
// iflag=l if a particular move represents a viable option

int imrr;
int imbr;
int j j, icount;
int bluelabel_randomized[MAXISAACNUM]
int redlabel_randomized[MAXISAACNUM];
int _huge **ilblrinb;
int _huge **ilblbinr;
int mem;
int iterations;
int num_generations;
int num_initial_conds;
int max_time_to_goal;
int min_time_to_goal;
int max_CM_dist;
time_t start_time, finish_time;

// = red.iredmoverange if alive, else = 1
// = blue.ibluemoverange if alive, else = 1

// jth red's (in blue's range) label
// jth blue's (in red's range) label

// maximum number of GA generations
// number of initial conditions to average over

310

Appendix E: STATS_X.dat Data Fields

int range, blue_in_RG_max, red_in_BG_max;
int termination_code;
int show_fitness_flag,-
int show_graphics_flag;
int show_chromosome_flag;
int best_flag;
int min_dist_genes_flag;

// 1: stop w/1 reaches flag, 2: >N near flag, 3: CM < r_CM, 4: no stop
// toggle to show fitness (=1) or no (=0)
// toggle to show graphics in small window (=1) or no (=0)
// toggle to show chromosome of current personality (=1) or no (=0)
// =1 if best personalities are to be written to file, else =0
// =1 if minimum distance genes (36-42) are to be used, else =0

int initial_condition_genes_flag,-// =1 if initial condition genes (43-45) are to be used, else =0
int CHROM_LENGTH; // actual chromosome length to be used during run
int min_containment_time_red; // minimum time in which RED can reach BLUE flag-containment area
int min_containment_time_blue; // minimum time in which BLUE can reach RED flag-containment area
int min_containment_time ; // minimum of the two possible containment times

double elapsed_time;
double power;
double best_val; //
double worst_val; //
double avg; //
double best_fitness_gen,- //
double worst_fitness_gen; //
double znorm;
double zz, tl, t3, t7, tl7;
long idum; //

best population fitness
best population fitness
avg population fitness
best fitness during current generation
worst fitness during current generation

random number seed (dummy 'carry-over' variable)

float zmin;
float zmoveprob;
float zran;
float z[5][5];
float zx, zy;
double lowerjbound, upper_bound;
double previous_best_fitness;

// minimum seed used by penalty function

// variable to catch initial ran number call
// intermediate expected penalty function

unsigned char buffer;
char bb[20];
unsigned char datafilename[30] ,-
unsigned char filename[30];
unsigned char outfilename[30];
unsigned char outdatafile[30];
unsigned char currentper[30];
unsigned char bestfilename[30];
unsigned char f ondir [_HAX_PATH] ;
unsigned char list[20];
struct _fontinfo fi;
struct _videoconfig vc;
short xfon;

// name of input ISAAC data file
// name of input data file
// name of output file
// name of output ISAACA.dat file
// name of output ISAACA.dat file to store current personality
// name of output file containing best personalities

int generation ,-
FILE »current;
FILE *ga_stat;
FILE *infile;
FILE «datafile;
FILE *bestfile;
FILE *outdata;
unsigned char s[44],-
unsigned char dbuffer
unsigned char tbuffer

current generation no.
// output file
// output file
// input GA data file
// input ISAAC data file
// output best personalities
// output best personalities

//

[91;
[9];

******* **********

Allocate Memory for Matrices

//********************
//
//
// //**

ilblrinb = (int**) _fmalloc((MAXISAACNUM+1)
if (!ilblrinb) nomemO ;
for (i = 0; i < (MAXISAACNUM+1); i++)
{

ilblrinbti] = (int*) _fmalloc((M&XNEIGHBORNUM+l)
if (!ilblrinb[i]) nomemO;

}

sizeof(int'));

sizeof(int));

ilblbinr = (int**) _fmalloc((MAXISAACNUM+1) * sizeof(int*));
if (!ilblbinr) nomemO;
for (i = 0; i < (MAXISAACNUM+1); i++)
{

ilblbinr[i] = (int*) _fmalloc((MAXNEIGHBORNUM+1) * sizeof(int));
if (!ilblbinr[i]) nomemO;

}

//*
//
//

*************** ft******** ********* t*******

Register and Set Fonts

311

Appendix E: STATS_X.dat Data Fields

//
if(_registerfonts("sserife.FON") <= 0)
{

_outtext("Enter full path where .FON files are located: ");
gets(fondir);
strcat(fondir, "*.FON");
if(registerfonts(fondir) <= 0)
{

_outtext("Error: can't register fonts");
exit(1);

}
}

//
// Set Video Mode
//

if (!_setvideomode(_SRES16C0L0R)){
_setvideomode(_VRES16C0L0R),-
_clearscreen(_GCLEARSCREEN);

}
_clearscreen(_GCLEARSCREEN);

//**********************•**

//
// Opening Screen
//

_setbkcolor (_BLUE) ,-
_clearscreen (_GCLEARSCREEN) ;
_getvideoconfig(&vc);
_setcolor(15) ;
_moveto(75, 80),-
_rectangle_w(_GFILLINTERIOR, 100, 85, 700, 90) ;
_moveto(565, 295); ■
_rectangle_w(_GFILLINTERIOR, 100, 297, 700, 302);
strcatl strcatl strcpy(list, "f"), "sserife"), "'");
strcatl list, "h30w24b");
_getfontinfo(&f i);
_setfont(list);
_setcolor(15);

xfon = (vc.numxpixels / 2) - (_getgtextextent("ISAAC") / 2);
jnoveto(xfon, 105);
_outgtext ("I S A A C");

xfon = (vc.numxpixels / 2) - (_getgtextextent("Irreducible Semi-Autonomous") / 2);
_moveto(xfon, 143);
_outgtext ("Irreducible Semi-Autonomous");

xfon = (vc.numxpixels / 2) - (_getgtextextent("Adaptive Combat") 12);
_moveto(xfon, 173);
_outgtext ("Adaptive Combat");
_unregisterfonts();
_registerfonts("oemlO.FON");
strcatl strcatl strcpyl list, "f"), "oemlO"), "'");
strcatl list, "h30w24bv") ;
_setfontI list);
_getfontinfo(&fi);

xfon = (vc.numxpixels / 2) - (_getgtextextent("(Genetic Algorithm 'Evolver')") / 2);
_moveto(xfon, 227) ,-
_outgtext ("(Genetic Algorithm 'Evolver')");

xfon = (vc.numxpixels / 2) - (_getgtextextent("Version 1.5.1") / 2);
_moveto(xfon, 257);
_outgtext ("Version 1.5.1");

xfon = (vc.numxpixels / 2) - (_getgtextextent("7 April 1997") 12);
_moveto(xfon, 272);
_outgtext ("7 April 1997");
_setcolor(7);

xfon = (vc.numxpixels / 2) - (_getgtextextent("Andy Ilachinski") 12);
_moveto(xfon, 350);
_outgtext ("Andy Ilachinski");

xfon = (vc.numxpixels 12)- (_getgtextextent("Center for Naval Analyses") 12);
_moveto(xfon, 365);.
_outgtext ("Center for Naval Analyses");

xfon = (vc.numxpixels 12)- (_getgtextextent("4401 Ford Avenue") 12);
_moveto(xfon, 380);
_outgtext ("4401 Ford Avenue");
~ xfon = (vc.numxpixels 12)- (_getgtextextent("Alexandria, VA 22302") 12);
_moveto(xfon, 395);
_outgtext ("Alexandria, VA 22302");

xfon = (vc.numxpixels 12)- (_getgtextextent("ilachina6cna.org") 12);

312

Appendix E: STATSJJLdat Data Fields

_moveto(xfon, 410);
_outgtext ("ilachina@cna.org");

xfon = (vc.numxpixels / 2)
_moveto(xfon, 550) ;
_outgtext ("Press <ENTER> to continue

_getch () ;

_clearscreen (_GCLEARSCREEN);

(_getgtextextent("Press <ENTER> to continue ") / 2);

.");

// prompt for file names
_unregisterfonts ();
_registerfonts("sserife.FON")
strcat(strcat(strcpyl list, "
strcat(list, "h30w24bv");
_getfontinfo(&fi);
_setfont (list) ,-
xfon = (vc.numxpixels / 2)
_moveto(xfon, 80) ;
_setcolor (15) ,-
_outgtext ("Specify Input Files");
_settextposition(10, 30);
_setcolor(7);
printf("ISAAC input (ga_isaac.dat)
scanf("%s", Sdatafilename) ;

), "sserife"),

(_getgtextextent("Specify Input Files") 12);

");

");
_settextposition(12, 30);
printf("GA input (ga_data.dat):
scanf("%s", sfilename);

xfon = (vc.numxpixels / 2) - (_getgtextextent("Specify Output Files* 1/2);
_moveto(xfon, 275) ;
_setcolor(15) ,-
_outgtext ("Specify Output Files"),-
_settextposition(22, 30);
_setcolor(7);
printf ("GA summary output (ga_stat.dat): "),-
scanf("%s", soutfilename);

// default is to NOT show graphics on screen
show_graphics_flag = 0;

// default is to NOT show fitness on screen
show_fitness_flag = 0;

// default is to NOT show chromosome on screen
show_chromosome_flag = 0;

// initialize built-in time counter
_tzset();
time(istart_time);

// open output update file
if ((ga_stat=fopen(outfilename, "w")) == NULL) {

printf(" Cannot open GA data file\n");
exit(l);

}

_strdate(dbuffer);
fprintf(ga_stat, "start date: %s \n", dbuffer);
_strtime(tbuffer);
fprintf(ga_stat, "start time: %s \n", tbuffer);

// initialize
if ((infile=fopen(filename,"r")) == NULL) {

fprintf(ga_stat,"\nCannot open input file\n");
exit(l);

}

S, S, S);

// read data
fscanf(infile, "%s", s)
fscanf(infile. "%s", s)
fscanf(infile, "%s%s%s"
fscanf(infile, "%s", s)
fscanf(infile, "%s". s)
fscanf(infile. "%s%i" ,s,
fscanf(infile, "%s%i" ,s.
f scanf(infile. "%s%i" ,s,

&num_generations) ;
&num_initial_conds);
&max_time_to_goal);

fscanf(infile,"%s%lf",s, ipower);
fscanf(infile,"%s%i",s, &best_flag);

CHROM_LENGTH=3 5 ;

313

Appendix E: STATS_X.dat Data Fields

fscanf(infile,"%s%i",s, &min_dist_genes_flag);
if (min_dist_genes_flag==l) CHROM_LENGTH=42 ;

fscanf(infile,"%s%i",s, &initial_condition_genes_flag);
if (initial_condition_genes_flag==l)CHROM_LENGTH=45;

fscanf(infile, "%s", s);
fscanf(infile,
fscanf(infile,
fscanf(infile,
fscanf(infile,
fscanf(infile,
fscanf(infile,
fscanf(infile,

"%s", s);
"%s%s%s%s'
"%s", s);
"%s", s);
%s%lf",s,
%s%lf,s,
%s%lf',s.

s);

«emission.alpha_l); // minimize time to goal
&mission.alpha_2); // minimize number of friendly losses

// maximize number of enemy losses
// maximize survival ratio of alive to enemy forces
// minimize cummulative distance between red CM and blue flag

Emission.alpha_6); // maximize cummulative distance between blue CM and red flag
Emission.alpha_7); // maximize number of friendly forces near enemy flag
&mission.alpha_8); // minimize number of enemy forces near friendly flag
Emission.alpha_9),- // minimize total number of friendly fratricide hits
Emission.alpha_10),-// maximize total number of enemy fratricide hits

Stmission. alpha_3);
emission. alpha_4);
Emission. alpha_5);

s);

fscanf(infile,"%s%lf",s,
fscanf(infile,"%s%lf,s,
fscanf(infile,"%s%lf",s,
fscanf(infile,"%s%lf",s,
fscanf(infile,"%s%lf",s,
fscanf(infile,"%s%lf",s,
fscanf(infile,"%s%lf,s,
fscanf(infile, "%s", s);
fscanf(infile, "%s", s);
fscanf(infile, "%s%s%s",
fscanf(infile, "%s", s);
fscanf(infile, "%s", s);
fscanf(infile,"%s%i",s, &termination_code);

// normalize penalty weights
if (termination_code == 4) mission.alpha_l=0; // do not minimize time_to_goal if no termination
znorm = mission. alpha_l + mission.alpha_2 + mission. alpha_3 + mission. alpha_4 +

mission.alpha_5 + mission.alpha_6 + mission.alpha_7 + mission.alpha_8 +
mission.alpha_9 + mission.alpha_10;

mission.alpha_l = mission.alpha_l / znorm;
mission.alpha_2 = mission.alpha_2 / znorm;
mission.alpha_3 = mission.alpha_3 / znorm;
mission.alpha_4 = mission.alpha_4 / znorm;
mission.alpha_5 = mission.alpha_5 / znorm;
mission.alpha_6 = mission.alpha_6 / znorm;
mission.alpha_7 = mission.alpha_7 / znorm;
mission.alpha_8 = mission.alpha_8 / znorm;
mission.alpha_9 = mission.alpha_9 / znorm;
mission.alpha_10 = mission.alpha_10 / znorm;

fscanf(infile,"%s%lf",s, Emission.near_range);
fscanf(infile,"%s%lf",s, Smission.near_range_num);
fscanf (infile, "%s%lf ",s,. S.mission.r_CM_f) ;
fscanf(infile,
fscanf(infile,
fscanf(infile,
fscanf(infile, "%s",
fscanf(infile, "%s",

s);

s, &lower_bound, £cupper_bound) ;

"%s", s);
"%s", s);
"%s%s%s", s

s);
s);

for (i=l; i<=CHROM_LENGTH; i++){
fscanf(infile, "%s%lf,%lf",

for (j=0; j<POPSIZE; j++){
population!j].fitness=0;
population[j].rel_fitness=0;
population[j].cum_fitness=0;
population[j].lower[i]=lower_bound;
population[j].upper[i]=upper_bound;
population[j].gene[i]=randval(population[j].lower[i], populationtj].upper[i]);

}
}
fclose(infile);

if (best_flag==l){
_settextposition(24, 30);
printfCGA 'best' output (ga_best.dat): ");
scanf ("%s", Stbestfilename) ;
if ((bestfile=fopen(bestfilename,"w")) == NULL) {

fprintf(ga_stat,"\nCannot open 'best personalities' output file\n");
exit(l);

}
WRITE_FITNESS(bestfile, Smission, termination_code, max_time_to_goal) ;

}

_settextposition(26, 30);
printf("Output ISAAC-dat file (isaac.dat): ");
scanf (" %s", Stoutdatafile);
if ((outdata = fopenloutdatafile, "w")) == NULL){

printf(" Cannot open ISAAC output data file.Xn");
exit(l);

}

_unregisterfonts();

314

Appendix E: STATS_X.dat Data Fields

„registerfonts("oemlO.FON");
strcat(strcatl strcpyl list, "f"), "oemlO"), "'");
strcatl list, "h30w24bv");
_get£ontinfo(&fi);
_setfont(list);

_clearscreen (_GCLEARSCREEN) ;

WRITE_FITNESS(ga_stat, Sffliission, termination_code, max_time_to_goal);
fprintf(ga_stat, " generation best worst best worst average ave + Standard ave - Standard

standard\n");
fprintf(ga_stat, " number value value value value fitness deviation deviation

deviation\n");
fprintf(ga_stat, " (overall) (overall) (gen) (gen) (gen)\n");

_setvideomode (_SRES16COLOR);
_setviewport(l,1,799,599);
_clearscreen (_GCLEARSCREEN);

// seed random number generator
idum=-31415926;
zran=ranl(fcidum);
srand((unsigned)time(NULL));

// set generation counter to zero
generation = 0;
best_val =0; // overall best
worst_val = 1.; // overall worst
avg = 0;
previous_best_fitness = 0;

// display on-screen prompts
PROMPTS();

while(generation < num_generations){

// display generation on screen
_setviewport(l,33,799,85);
_clearscreen(_GVTEWPORT);
_setviewport(l,1,799,599);
_setcolor(15);
_unregisterfonts() ;
_registerfonts("sserife.FON");
strcat(strcatf strcpyf list, "t"), "sserife"), "'"),-
strcat(list, "h30w24bv") ;
_getfontinfo (Sef i);
_setfont (list) ,-

xfon = (vc.numxpixels / 2) - (_getgtextextent("GENERATION = XXX") / 2);
_moveto(xfon, 47) ;
_setcolor (2) ,-
_outgtext ("GENERATION = •);
_outgtext(itoa(generation+1, bb, 10)) ;
_unregisterfonts();
_registerfonts("oemlO.FON");
strcat(strcatl strcpy(list, "t"), "oemlO"), "'"),-
strcatf list, "h30w24bv");
_getf ontinf o (&f i) ,-
_setfont(list);

if (generation > 0){
select(),- // select survivors from population
crossover(CHROM_LENGTH); // perform a single-point crossover
mutate (CHROM_LENGTH); // mutate a gene
// initialize ave fitness
avg=0;
// update progress-report
progress_report(generation, ga_stat, &best_val, &worst_val, &avg,

best_fitness_gen, worst_fitness_gen) ,-
if(best_flag==l){ // then write best personality genes to file

if (population[POPSIZE].fitness > previous_best_fitness){
fprintf(bestfile,"\n") ;
fprintf (bestfile, "Generation = %3i \n",generation) ,-
fprintf(bestfile,"Fitness=%4.4f",population[POPSIZE].fitness);
WRITE_CHROM_TO_FILE(POPSIZE, bestfile, initial_condition_genes_flag) ,-
previous_best_fitness = population[POPSIZE].fitness;

}
}

}

// initialize best and worst fitness for current generation
best_fitness_gen = 0;

315

Appendix E: STATS_X.dat Data Fields

-red.w4rdeff_a;

-red.w5rdeff_a;

-red.w6rde£f_a;

worst_fitness_gen = 1.;

um im i ii i ii im 111 ii i ii 111 im 1111111111111 ii 1111111111111111111 a 1111 ii 11 in ii
ii
II calculate "mission penalty" for nth generation;
// i.e. run ISAAC
//
iimmmmmmmimmmimmimmmmiimmmmmmmmim
for (mem=0; mem<POPSIZE; mem++){ // do for each member of the population

// first read-in default values
if ((datafile=fopen(datafilename,"r'l) == NULL) {

printfC Cannot open ISAAC data file\n");
exit(l);

}

INPUT_FILE_DATA(datafilename, fcbattle, Sired, &blue, Scidum) ;

fclose(datafile);

// now re-define ISAACA force with genome-prescribed personality
red.irsrange = (int)(population[mem].gene[1]);

if (red.irsrange == 0)red.irsrange=l;
red.iredfrange = (int)(population[mem].gene[2]);

if (red.iredfrange == 0)red.iredfrange=l;
// make sure F-range <= S-range
if (red.iredfrange > red.irsrange)red.iredfrange = red.irsrange;;

red.iradvrange[l] = (int) (population[mem] .gene[3]) ,-
if (red.iradvrangetl] == 0)red.iradvrange[l]=l;

red.wlrdeff_a = (float)(population[mem].gene[4]);
if (population[mem] .gene[5] < .5)red.wlrdeff_a = -red.wlrdeff_a;

red.w2rdeff_a = (float)(population[mem].gene[6));
if (population[mem] .gene[7] < .5)red.w2rdeff_a = -red.w2rdeff_a;

red.w3rdeff_a = (float)(population[mem].gene[8]);
if (population[mem].gene[9] < .5)red.w3rdeff_a = -red.w3rdeff_a;

red.w4rdeff_a = (float)(population[mem].gene[10]);
if (population[mem].genetll] < .5)red.w4rdeff_a

red.w5rdeff_a = (float)(population[mem].gene[12]);
if (population[mem].gene[13] < .5)red.w5rdeff_a

red.w6rdeff_a = (float)(population[mem].gene[14]);
if (population[mem].gene[15] < .5)red.w6rdeff_a

red.wlrdeff_i = (float)(population[mem].gene[16]);
if (population[mem].gene[17] < .5)red.wlrdeff_i

red.w2rdeff_i = (float)(population[mem].gene[18]);
if (population[mem].gene[19] < .5)red.w2rdeff_i

red.w3rdeff_i = (float)(population[mem].gene[20]);
if (population[mem].gene[21] < .5)red.w3rdeff_i

red.w4rdeff_i = (float)(population[mem].gene[22]);
if (population[mem].gene[23] < .5)red.w4rdeff_i

red.w5rdeff_i = (float)(population[mem].gene[24]);
if (population[mem].gene[25] < .5)red.w5rdeff_i

red.w6rdeff_i = (float)(population[mem].gene[26]);
if (population[mem].gene[27] < .5)red.w6rdeff_i = -red.w6rdeff_i;

red.iradv_a[l] = (int)(population[mem].gene[28]);
red.irclus_a[l] = (int)(population[mem].gene[29]);
red.iroom_a[l] = (int)(population[mem].gene[30]);

if (population[mem].gene[31] < .5)red.ircom_a[1] = -red.ircom_a[1];
red.iradv_i[1] = (int)(population[mem].gene[32]);
red.irclus_i[l] = (int)(population[mem].gene[33]);
red.ircom_i[1] = (int)(population[mem].gene[34]);

if (population[mem].gene[35] < .5)red.ircom_i[l] = -red.ircom_i[l];
if (min_dist_genes_flag==l){

if (population[mem].gene[36] > .5)(// the use min dist genes (37-42)
red.zrfromrmindist_a= (float)(population[mem].gene[37]);
red.zbfromrmindist_a= (float)(population[mem].gene[38]);
red.zrfromrgmindist_a= (float)(population[mem].gene[39]);
red.zrfromrmindist_i= (float) (population[mem] .gene[40]) ,-
red.zbfromrmindist_i= (float)(population[mem].gene[41]);
red.zrfromrgmindist_i= (float)(population[mem].gene[42]);

}
else{

red.zrfromrmindist_a= 0;
red.zbfromrmindist_a= 0;
red.zrfromrgmindist_a= 0;
red.zrfromrmindist_i= 0;
red.zbfromrmindist_i= 0;
red.zrfromrgmindist_i= 0;

}
}
else(
population[mem].gene[36] = 0;

316

-red.wlrdeff_i;

-red.w2 rde f f_i;

= -red.w3rdeff_

-red.w4rdeff_

-red.w5rdef f_

Appendix E: STATS_X.dat Data Fields

population[mem].gene[37]
population[mem].gene[38]
population[mem].gene[39]
population[mem].gene[40]
population[mem].gene[41]
population[mem].gene[42]
red.zrfromrmindist_a= 0;
red.zbfromrmindist_a= 0;
red.zrfromrgmindist_a= 0;
red.zrfromrmindist_i= 0;
red.zbfromrmindist_i= 0;
red.zrfromrgmindist_i= 0;

}

if (initial_condition_genes_flag==l)(
if (population[mem].gene[43] <= sqrt(battle.isize)+l){

battle.ibattlebox_red_length = (int)(sqrt(battle.isize)) + 2;
battle.ibattlebox_red_width = (int)(sqrt(battle.isize)) + 2;

}
else{

battle.ibattlebox_red_length = (int)(population[mem].gene[43]);
battle.ibattlebox_red_width = (int)(population[mem].gene[43]);

}
battle.ibattlebox_red_cen_x
battle.ibattlebox_red_oen_y

}
elsel

population[mem].gene[43]
population[mem].gene[44]
population[mem].gene[45]

}

(int)(population[mem].gene[44]);
(int)(population[mem].gene[45]);

// overwrite the ISAACA data file with new data
if ((datafile = fopenfdatafilename, "w")) == NULL){
printfC Cannot open ISAAC data file.\n");
exit(l);

}

WRITE_DATA_FILE(datafile, Sbattle, «red, &blue);

// now read-in and initialize using updated system values
if ((datafile=fopen(datafilename,"r")) == NULL) {

printf(" Cannot open ISAAC data file.\n");
exit(l);

}

INPUT_FILE_DATA(datafilename, fcbattle, &red, &blue, Sddum) ;

// find minimal possible time to goal
zx= (float)(red.redgoalx) -

(float)(battle.ibattlebox_red_cen_x) + (float)(.5*battle.ibattlebox_red_length);
zy= (float)(red.redgoaly) -

(float)(battle.ibattlebox_red_cen_y) + (float)(.5*battle.ibattlebox_red_width);
min_time_to_goal = (int)(sqrtl zx*zx + zy*zy)) - 1;
max_CM_dist = (int)(1.4142135 * battle.isize) + 1;

// find maximum number of near-goal ISAACAs
blue_in_RG_max = 0;
red_in_BG_max = 0;
range = (int)(mission.near_range);
for (i=blue.bluegoalx-range; i<=blue.bluegoalx+range; i++){

for (j=blue.bluegoaly-range; j<=blue.bluegoaly+range; j++){
if (i<=battle.isize && i>=l && j<=battle.isize && j>=l) ++blue_in_RG_max;

}
}
if (blue_in_RG_max > blue.ibluenum)blue_in_RG_max=blue.ibluenum;
for (i=red.redgoalx-range; i<=red.redgoalx+range; i++){

for (j=red.redgoaly-range; j<=red.redgoaly+range; j++){
if (i<=battle.isize && i>=l && j<=battle.isize && j>=l) ++red_in_BG_max;

)
}
if (red_in_BGjnax > red.irednum)red_in_BG_max=red.irednum;

// find minimum time in which RED can reach BLUE flag-containment area
zx= (float)(red.redgoalx - range) -

(float) (battle.ibattlebox_red_cen_x) + (float) (.5*battle.ibattlebox_red_length) ,-
zy= (float)(red.redgoaly - range) -

(float) (battle.ibattlebox_red_cen_y) + (float) (.5*battle.ibattlebox_red_width) ,-
min_containment_time_red = (int)(sqrt(zx*zx + zy*zy)) - 1;
zx= (float)(blue.bluegoalx + range) -

((float)(battle.ibattlebox_blue_cen_x) - (float)(.5*battle.ibattlebox_blue_length));

317

Appendix E: STATS_X.dat Data Fields

zy= (float)(blue.bluegoaly + range) -
((float)(battle.ibattlebox_blue_cen_y) - (float)(.5*battle.ibattlebox_blue_width));

min_containment_time_blue = (int)(sqrt(zx'zx + zy'zy)) - 1;
min_containment_time = min(min_containment_time_red, min_containment_time_blue);

fclose(datafile);

iimtiiiiiiii immun min
II
II Now run ISAAC and compute "mission objective" penalty
// average over num_initial_conds
//
mmiiiiiimi i m um mim minim i mim minium minium urn
for (iterations=l; iterations<=num_initial_conds; iterations**){

// initialize fratricide counters
battle.red_frat_count=0;
battle.blue_frat_count=0;

// initial GOAL_STATS counters
mission.red_near_BF[iterations] = 0;
mission.blue_near_RF[iterations] = 0;

// initialize combat battlefield
INITIALIZE_FIELD(&battle, &red, Sblue, iflag, Scidum);

// initialize time counter
itime = 0;

1111 m 11 ii 11111111111 mmim mi 11 in i m mi 1111 m m 111111111111 ii 111111
ii
II START MAIN DYNAMICS LOOP
//
mmmmmmmmmmimmmmmmmmmimiimimiiiimi
++itime; // increment time counter

// dump progress report to screen
SCREEN_UPDATE(itime, iterations, mem, generation, num_generations,

num_initial_conds, max_time_to_goal, avg, best_val,
worst_val, &best_fitness_gen, &worst_fitness_gen,
population[mem-1].fitness);

// check to see if graphics are to be displayed on screen
if (show_graphics_flag == 1){

SHOW_GRAPHICS(5cbattle, &red, &blue, Emission, termination_code,
max_time_to_goal) ;

}

// check to see if GOAL_STATS are to be calculated and updated
if (mission.alpha_7 != 0 || // friendly_near_enemy_F weight is not zero

mission.alpha_8 != 0 j j // enemy_near_friendly_F weight is not zero
termination_code ==2 // terminate run if number of ISAACAs > N
) { //do only if min_time_to_containment has been reached

if (itime >= min_containment_time){
// initialize termination flag; if =1 after then = 1
termination_flag = 0;
GOAL_STATS(iterations, &mission, battle.isize, &red, &blue,

&termination_flag, blue_in_RG_max, red_in_BG_max) ,-
// has termination condition been satisfied?
if (termination_code == 2 && termination_flag == 1) goto goal;

)
)
// check to see if CENTER_MASS is to be calculated and updated
if (mission.alpha_5 != 0 || // friendly_CM_to_enemy_flag weight is not zero

mission.alpha_6 != 0 || // enemy_CM_to_friendly_flag weight is not zero
termination_code ==3 // terminate run if CM within range r_CM
){

// initialize termination flag; if =1 after then = 1
termination_flag = 0;
CENTER_MASS(iterations, emission, &red, iblue, &termination_flag,

max_CM_dist);
// has termination condition been satisfied?
if (termination_code == 3 && termination_flag == 1) goto goal;

}

// has maximum time been reached?
if (itime == max_time_to_goal) goto goal;

//

318

Appendix E: STATS_X.dat Data Fields

newired:

newiblue:

// Should order of move selection be shuffled during each iteration?
//
//***
if (battle.imove_selection == 1){ // select moves in fixed order

for (j=l; j<=red.irednum; ++j){
redlabel_randomized[j] = j;

}
}
else{

//**

Randomize order in which to consider moves for red ISAACAs:
'i' is the actual label and the array redlabel_randomized[j]

}

//
//
//
//
//***************
icount=0;
for (j=l; j<=red.irednum; ++j){

// select random label between 1 and red.irednum
i = (int)(getrandom(0, red.irednum, fcidum))+l;
// test to see if label has already been used
for (jj=l; jj<=icount; ++jj){

if (redlabel_randomized[jj] == i) goto newired
}
++icount;
redlabel_randomized[j] = i;

}

if (battle.imove_selection == 1){ // select moves in fixed order
for (j=l; j<=blue.ibluenum; ++j){

bluelabel_randomized[j] = j;
}

}
else{

//**

Randomize order in which to consider moves for blue ISAACAs:
'i' is the actual label and the array bluelabel_randomized[j]

//
//
//
//
//******************************
icount=0;
for (j=l; j<=blue.ibluenum; ++j){

II select random label between 1 and red.irednum
i = (int)(getrandom(0, blue.ibluenum, sidum))+l;
// test to see if label has already been used
for (jj=l; jj<=icount; ++jj){

if (bluelabel_randomized[jj] == i) goto newiblue;
}
++icount;
bluelabel_randomized[j] = i;

}

if(_kbhit 0){
buffer = _getch();
switch (buffer) {

case ' c': / / chromosome toggle
show_chromosome_flag = (show_chromosome_flag + 1) % 2;
if (show_chromosome_flag==0) {

_setviewport(555,151,799,580>;
_clearscreen(_GVIEWPORT);
_setviewport(l,1,799,599);

}
else{ // show chromosome

SHOW_CHROM0S0ME(mem, initial_condition_genes_flag) ;
}
break;

case 's': // store current chromosome to file
_setviewport(260,575,680,590);
_clearscreen(_GVIEWPORT);
_setviewport(l,1,799,599);
//_moveto(270, 562);
_setcolor (14) ,-
xfon = (vc.numxpixels 12)-

(_getgtextextent("Output-data file name ? ") / 2);
_moveto(xfon, 562) ,-
_outgtext ("Output-data file name ? ");
//_outgtext(" Output-data file name ? ");
_settextposition(36, 66);
scanf("%s", Scurrentper);
if ((current = fopenlcurrentper, "w")) == NULL){

319

Appendix E: STATS_X.dat Data Fields

printf!" Cannot open ISAAC output data file.Nn");
exit(l) ;

>
// dump current personality to file
WRITE_DATA_FILE(current, Sibattle, Sred, &blue);
//WRITE_CHROM_TO_FILE(mem, current, initial_condition_genes_flag) ;
fclose(current);
_setviewport(l,550,799,580);
_clearscreen (_GVIEWPORT) ;
_setviewport(l, 1,799,599) ,-
break;

case 'f': // graphics toggle
show_fitness_flag = (show_fitness_flag + 1) % 2;
if (show_fitness_flag==0){

_setviewport(1,200,290,580);
_clearscreen(_GVIEWPORT);
_setviewport(l,1,799,599);

}
else{ // show fitness

SHOW_FITNESS(&mission, termination_code, max_time_to_goal);
}
break;

case 'b': // graphics toggle
show_graphics_flag = (show_graphics_flag + 1) % 2;
if (show_graphics_flag==0){

_setviewport(291,200,551,580);
_clearscreen(_GVIEWPORT);
_setviewport(l,l,799,599);

}
break;

case 'q': // quit
time(&finish_time);
elapsed_time = difftime(finish_time, start_time);
if (generation == 0){

keep_the_best(CHROM_LENGTH) ; // identify "best" ISAACA personality
}
else{

elitist (CHROM_LENGTH) ; // find the "best" ISAACA personality
}

// decode current best chromosome to ISAACA personality
DECODE_BEST(&red, min_dist_genes_flag, initial_condition_genes_flag);

WRITE_DATA_FILE(outdata, &battle, Sired, Siblue) ;

// dump best current personality to file
fprintf(ga_stat,"\n Interim best personality: \n");
WRITE_CHROM_TO_FILE(POPSIZE, ga_stat, initial_condition_genes_flag) ;

fprintf(ga_stat,"\n\n Best fitness=%4.4f",population[POPSIZE].fitness);
fprintf (ga_stat, "\n\n") ,-
_strdate (dbuf f er) ,-
fprintf! ga_stat, "start date: %s \n", dbuffer) ,-
_strtime(tbuffer);
fprintf! ga_stat," star t time: %s \n", tbuf f er) ,-
fprintf! ga_stat,"elapsed time: %6.0f seconds \n", elapsed_time);
fclose(ga_stat);
_setviewport(260,565,680,580) ;
_clearscreen (_GVIEWPORT) ;
_setviewport(l,1,799,599);
_moveto(270, 565);
_setcolor(14);
_setgtextvector (1, 0) ;
_outgtext(" Run Terminated");
_getch();
exit(l);
if (best_flag==l)f close(bestfile) ,-
break;

}
}

//
// Determine what blue isaacs are in red's neighborhood
//

for (i=l; i<=red.irednum; ++i) {
ibinrnum = BLUEINRED! i, &red, &blue, ilblbinr);

}

//* ********************************** ********

320

Appendix E: STATS_X.dat Data Fields

//
// Determine what red isaacs are in blue's neighborhood
//

for (i=l; i<=blue.ibluenum; ++i) {
irinbnum = REDINBLUEI i, &red, &blue, ilblrinb);

}

//
// Adjudicate combat attrition
//

if (battle.max_combat_flag == 1){ // then no limit on number of
// simultaneous engagements

COMBAT(ibattle, &red, Sblue, Sidum, ilblbinr, ilblrinb);
}
else{ // use routine that puts limit on the number of

// simultaneous engagements
C0MBAT_2(ibattle, ired, Sblue, Sidum, ilblbinr, ilblrinb);

}

//
// UPDATE RED ISAACAs
//

for (j=l; j<=red.irednum; ++j) {

11 *********** ****i(***** ************** ****i(***ic*^it***^*i(***ie^***********^***

//
// Get randomized label
//
I J ********** ***************************1f*fii-k-k-k************** *********** ******

i = redlabel_randomized[j];

//A**

//.
// Do only if red ISAAC is alive or injured
//

if (red.rstatusfi] > 0) {

irinrnum = 0;
ibinrnum = 0;
iradvnum = MAXISAACNUM;
ibinrinjnum = 0;
irinrinjnum = 0;

RED_SENSOR(&irinrnum, &ibinmum, &iradvnum, &ibinrinjnum, Siirinrinjnum, i,
ired, &blue, ilblbinr);

//
// Adapt red weights; i.e. determine values for red.wired, red.w2red,
// red.w3red, red.w4red, red.w5red, red.w6red to be used for this time step
//
//**#*********************
ADAPT_RED_ISAACA_WEIGHTS(i, irinrnum, ibinrnum, iradvnum, &red) ;

//
// Are communications to be used between ISAACAs?
//
//A***

if (red.red_COMM_flag != 0) { // if COMMs 'on' then get COMM data
RED_COMM_INFO(i, £=red, Sblue) ;

}

//
// Compute expected penalty for each possible move;
// isaac's move will be into square with least penalty
//
//**

igoalflag=0; // if remains equal to 0 then goal not reached

321

Appendix E: STATS_X.dat Data Fields

//
// Initialize minimum sum value
//

zmin = (float)(99999.);

// get movement range
imrr = red.iredmoverange;
if (red.rstatusli] == 1) imrr = 1; // if injured, make sure max range equals 1

if (red.red_COMM_flag == 1){ // use 'COMM' routine
zmin = COMPUTEEEDPENALTY_COMM(i, imrr, Scigoalflag, irinrinjnum, ibinrinjnum,

zmin, iflag, z, Sebattle, fcred, Siblue);
}
else{

zmin = COMPUTEREDPENALTY(i, imrr, fcigoalflag, irinrinjnum, ibinrinjnum,
zmin, iflag, z, Stbattle, &red, Siblue);

}

if (igoalflag == 1 &&. termination_code ==1) {
goto goal;

}

//
// If zmin = 99999 then there are no viable moves —> do nothing
//

if (zmin == 99999.){
//
//do nothing
//

if (imrr == 1){
imove = 5;

}
else{

imove = 13;
}

}
else{

//
// See what possible local moves correspond to zmin
//

imc = 0; // initialize local count variable
for (imx = - imrr; imx <= imrr; ++imx) {

for (imy = - imrr; imy <= imrr; ++imy) {
if (iflagtimx + 2][imy + 2] == 1 &&

z[imx + 2][imy + 2] == zmin){
// add another candidate move to count
++imc;
// select candidate move
if (imrr == 1){

imovecand[imc] = imx + 5 - 3 * imy;
}
else{

imovecand[imc] = imx + 13 - 5 * imy;
}

}
}

}

//it**

//
// Actual move is randomly selected from among the imc candidates
//

if (imc == 1){
imove = imovecand[l];
}

else{
zmoveprob = (float) (0.0001 * getrandomd,10000,Scidum)) ;
for (im = 1; im < imc + 1; ++im) {

if (zmoveprob > (float) (im - 1) / (float) (imc) Set
zmoveprob <= (float)(im) / (float)(imc))(
imove = imovecand[im];

}
)

}

322

Appendix E: STATS_X.dat Data Fields

}

s/***^

//
// Move red to new square for which penalty is minimum
//

MOVERED (i, imrr, imove, Sibattle, Sired);

) // end if red.rstatus[i]!=0 test

} // end i = 1 to red.irednum loop

//A**

//
// UPDATE BLUE ISAACAS
//
//A***

for (j=l; j<=blue.ibluenum; ++j) {

// get randomized label
i = bluelabel_randomized[j];

// do only if blue ISAAC is alive or injured
if (blue.bstatusli] > 0){

ibinbnum = 0;
irinbnum = 0;
ibadvnum = MAXISAACNUM;
irinbinjnum = 0;
ibinbinjnum = 0,-

BLUE_SENSOR(&ibinbnum, Siirinbnum, Sibadvnum, Scirinbinjnum, Scibinbinjnum, i,
&red, Scblue, ilblrinb);

// adapt blue weights
ADAPT_BLUE_ISAACA_WEIGHTS(i, ibinbnum, irinbnum, ibadvnum, fcblue) ;

// are communications to be used between ISAACAs?
if (blue.blue_COMM_flag != 0){ // if COMMs 'on' then get COMM data

BLUE_COMM_INFO(i, Sired, Sblue) ;
}

// compute expected penalty for each possible move;

// initialize minimum sum value
zmin = (float)(99999.);

// get movement range
imbr = blue.ibluemoverange;
if (blue.bstatusli] == 1) imbr = 1; // if injured, make sure max range equals 1

if (blue.blue_COMM_flag == 1) { // use 'COMM' routine
zmin = COMPUTEBLUEPENALTY_COMM(i, imbr, Sigoalflag, irinbinjnum, ibinbinjnum,

zmin, iflag, z, Sibattle, &red, Sblue);
}
else(

zmin = COMPUTEBLUEPENALTY(i, imbr, Scigoalflag, irinbinjnum, ibinbinjnum,
zmin, iflag, z, Sibattle, &red, &blue);

}

// if zmin = 99999 then there are no viable moves --> do nothing
if (zmin == 99999.){
//do nothing

if (imbr == 1){
imove = 5;

}
else{

imove = 13;
}

}
else{
// see what possible local moves correspond to zmin

imc = 0;
for (imx = -imbr; imx <= imbr; ++imx) {

for (imy = -imbr; imy <= imbr; ++imy) {
if (iflag[imx + 2][imy + 2] == 1 &&

z[imx + 2][imy + 2] == zmin){
// add another candidate move to count
++imc;

323

Appendix E: STATS_X.dat Data Fields

// select candidate move
if (imbr == 1){

imovecand [imc] = imx + 5 - 3 * imy;
}
else{

imovecand [imc] = imx + 13 - 5 * imy;
}

}
}

}

// actual move is randomly selected from among the imc candidates
if (imc == 1){

imove = imovecand[1];
}
else{

zmoveprob = (float)(0.0001 * getrandomd,10000,Sidum));
for (im=l; im<imc+l; ++im) {

if (zmoveprob > (float)(im - 1) / (float)(imc) &&
zmoveprob <= (float)(im) / (float)(imc)){
imove = imovecand[im);

}
}

}
} // end if zmin=99999

// move red to new square for which penalty is minimum
MOVEBLUE (i, imbr, imove, Sbattle, Siblue);

} //end if blue.bstatusti]!=0 test

} // end i = 1 to blue.ibluenum loop

goto start;

lll
II
II Run is terminated: calculate penalty
//
lll

goal: actual_time = itime;
if (itime < min_time_to_goal) itime = min_time_to_goal;

// time to reach blue flag
mission. time_to_goal [iterations] =

pow((double)(max_time_to_goal - itime)/
(double)(max_time_to_goal - min_time_to_goal), power);

// count reds
ired=0;
for (i=l; i<=red.irednum; i++){

if (red.rstatus[i) > 0){
++ired;

}
}
// count blues
iblue=0;
for (i=l; i<=blue.ibluenum,- i++) {

if (blue.bstatus[i] > 0){
++iblue;

}
}

// number of friendly ISAACAs remaining
mission.total_friendly_losstiterations] =

pow((double)(ired)/(double)(red.irednum), power);

// number of enemy ISAACAs killed
mission.total_enemy_loss[iterations] =

pow((double)(blue.ibluenum - iblue)/(double)(blue.ibluenum), power);

// normalized ratio of surviving ISAACAs
if (iblue==0) iblue=l;
tl = (double)(1.0/ (double)(red.irednum));
t3 = (double)(1.0/(double)(iblue));
t7 = (double)(1.0/(double)(blue.ibluenum-1.0));
tl7 = (double)(ired*tl*t3«blue.ibluenum/((blue.ibluenum-2.0)*t7*ired*tl*t3*blue.ibluenum*

blue.ibluenum*t7));
mission.survival_ratio[iterations] = pow(tl7 , power);

// center of mass distance of RED from opposing flag
if (mission.alpha_5 != 0){

324

Appendix E: STATS_X.dat Data Fields

mission.red_CM_to_BF_dist[iterations] =
pow((1. - mission.red_CM_to_BF_dist[iterations]/(double)(actual_time)), power);

}
else{

mission.red_CM_to_BF_dist[iterations] = 0;
}

// center of mass distance of BLUE from opposing flag
if (mission.alpha_6 != 0){

mission.blue_CM_to_RF_dist[iterations] =
pow(mission.blue_CM_to_RF_dist [iterations] / (double)(actual_time), power) ,-

}
eiset

mission.blue_CM_to_RF_dist[iterations] = 0;
}

// average number of RED ISAACAs near within opposing flag area
// (take average over actual_time - min_containment_time
if (mission.alpha_7 != 0){

// average over evolution steps
mission.red_near_BF[iterations] =

pow(mission.red_near_BF[iterations]/
(double) (actual_time- min_containment_time),power) ,-

}
else{

mission.red_near_BF[iterations] = 0;
}

// average number of BLUE ISAACAs near within opposing flag area
// (take average over actual_time - min_containment_time
if (mission.alpha_7 != 0 || mission.alpha_8 != 0){

// average over evolution steps
mission.blue_near_RF[iterations] =

pow((1. - mission.blue_near_RF[iterations]/
(double)(actual_time- min_containment_time)).power);

}
else{

mission.blue_near_RF[iterations] = 0;
}

// fratricide
if (battle.red_fratricide_flag==l){

zz = (double) (battle.red_frat_count)/(double) (red.irednum),-
if (zz > l)zz=l.;
mission.red_fratricide[iterations] = pow(1. - zz, power);

}
else{

mission.red_fratricide[iterations] = 0;
}
if (battle.blue_fratricide_flag==l){

zz = (double)(battle.blue_frat_count)/(double)(blue.ibluenum) ;
if (zz > l)zz=l.;
mission.blue_fratricide[iterations] = pow(zz, power),-

}
else{

mission.blue_fratricide[iterations] = 0;
}

} // iterations loop

// calculate "mission fitness" (to maximize)
// average over num_initial_conds for given personality
population[mem].fitness = 0;
for (iterations=l; iterations<=num_initial_conds; iterations**){

population[mem].fitness = population[mem].fitness +
mission.alpha_l * mission.time_to_goal[iterations] +
mission.alpha_2 * mission.total_friendly_loss[iterations] +
mission.alpha_3 * mission.total_enemy_loss[iterations] +
mission.alpha_4 * mission.survival_ratio[iterations] +
mission.alpha_5 * mission.red_CM_to_BF_dist[iterations] +
mission.alpha_6 * mission.blue_CM_to_RF_dist[iterations] +
mission.alpha_7 * mission.red_near^BF[iterations] +
mission.alpha_8 * mission.blue_near_RF[iterations] +
mission.alpha_9 * mission.red_fratricide[iterations] +
mission.alpha_10 * mission.blue_fratricide[iterations];

}
population[mem].fitness = population[mem].fitness / (double)(num_initial_conds);

}

if (generation == 0){
keep_the_best (CHROM_LENGTH) ; // identify "best" ISAACA personality

325

Appendix E: STATS_X.dat Data Fields

}
else{

elitist(CHROM_LENGTH); // find the "best" ISAACA personality
}

generation**; // update generation counter
} // generation loop

time(&finish_time);
elapsed_time = difftime(finish_time, start_time);

fprintf(ga_stat,"\n\n Simulation completed\n");
fprintf(ga_stat,"\n Best personality: \n");

WRITE_CHROM_TO_FILE(POPSIZE, ga_stat, initial_condition_genes_flag) ,-

fprintf(ga_stat,"\n\n Best fitness=%4.4f",population[POPSIZE].fitness);
fprint f(ga_stat,"\n\n");
_strdate(dbuffer);
fprintf(ga_stat,"start date: %s \n", dbuffer);
_strtime(tbuffer);
fprintf(ga_stat,"start time: %s \n", tbuffer);
fprintf(ga_stat,"elapsed time: %6.0f seconds \n", elapsed_time);
fclose(ga_stat);
if (best_flag==l)fclose(bestfile);

// decode current best chromosome to ISAACA personality
DECODE_BEST(&red, min_dist_genes_flag, initial_condition_genes_flag);

WRITE_DATA_FILE(outdata, Sbattle, &red, &blue);

fclose(outdata);

_settextposition(16,■30);
printfl" Run Complete");

}

//•a***

//
// Random number generator:
// Generates a value within bounds
//

double randval(double low, double high)
{

double val;
val=((double)(rand()%1000)/1000.0)*(high - low) + low;
return(val);

}

//
// keep the best member of the population
// (the last entry in the array Population has a copy
// of the best individual)
//

void keep_the_best(int CHROMLLENGTH)
{

int mem;
int i;
int current_best;

current_best=l; // initialize index of the best individual

for (mem=0; mem<POPSIZE; mem++) {
if (population[mem].fitness > population[POPSIZE].fitness){

current_best=mem;
population[POPSIZE].fitness=population[mem].fitness;

}
}
// once the best member in the population is found, copy the genes
for (i=l; i<=CHROM_LENGTH; i++)

population[POPSIZE].gene[i]=population[current_best].gene[i];
}

//**•**

//
// Elitist function: The best member of the previous generation is stored
// as the last in the array. If the best member of the current generation

326

Appendix E: STATS_X.dat Data Fields

// is worse then the best member of the previous generation, the latter one
// would replace the worst member of the current population
//

void elitist(int CHROM_LENGTH)
{

int i;
double best, worst; // best and worst fitness values
int best_memher, worst_member; // indexes of the best and worst member

best=population[0].fitness;
worst=population[0].fitness;
for (i=0; i<POPSIZE - 1; ++i){

if(population[i].fitness > population[i+l].fitness){
if (population[i].fitness >= best){

best=population[i].fitness;
bes t_member= i;

}
if (population[i+1].fitness <= worst){

worst=population[i+l].fitness;
worst_member=i + 1;

}
}
else{

if (population[i].fitness <= worst){
worst=population[i]-fitness;
worst_member=i;

}
if (population[i+1].fitness >= best){

best=population[i+l].fitness;
best_member=i + 1;

)
}

}
//if best individual from the new population is better than
// the best individual from the previous population, then
// copy the best from the new population; else replace the
// worst individual from the current population with the
// best one from the previous generation

if (best >= population[POPSIZE].fitness){
for (i=l; i<=CHROM_LENGTH; i++) {

population[POPSIZE].gene[i]=population[best_member].gene[i];
}
population[POPSIZE].fitness=population[best_member].fitness;

}
else{

for (i=l; i<=CHROM_LENGTH; i++){
population[worst_member].gene[i]=population[POPSIZE].gene[i];

}
population[worst_member].fitness=population[POPSIZE].fitness;

}
}

//***
//
// Selection function: Standard proportional selection for
// maximization problems incorporating elitist model - makes
// sure that the best member survives
//

void select(void)
{

int mem, i, j;
double sum=0;
double p;

// find total fitness of the population
for (mem=0; mem<POPSIZE; mem++) {

sum += population[mem].fitness;
}

// calculate relative fitness
for (mem=0; mem<POPSIZE; mem++){

population[mem].rel_fitness= population[mem].fitness/sum;
}
population!!)] .cum_fitness=population[0] .rel_fitness;

// calculate cumulative fitness
for (mem=l; mem<POPSIZE; mem++){

population [mem] .cum_fitness= population [mem-1] .cum_fitness +

327

Appendix E: STATS_X.dat Data Fields

population[mem].rel_fitness;

}

// finally select survivors using cumulative fitness.
for (i=0; i<POPSIZE; i++){

p=rand()%1000/1000.0;
if (p<population[0].cum_fitness){

newpopulationli]=population[0];
}
else(

for (j=0; j<POPSIZE;j++){
if (p >= population[j].cum_fitness && p<population[j+l].cum_fitness){

newpopulationli]=population[j+l];
}

}
}

}

// once a new population is created, copy it back
for (i=0; i<POPSIZE; i++) population[i]=newpopulation[i];

5

//
// Crossover operator:
// carries out a single point crossover between two parents

//

void crossover(int CHROM_LENGTH)
{

int mem, one;
int first =0; // count of the number of members chosen
double x;

for (mem=0; mem<POPSIZE; ++mem) {
x=rand()%1000/1000.0;
if (x<PXOVER) {

++first;
if (first-% 2 == 0){

Xover(one, mem, CHROM_LENGTH);
}
else{

one=mem;
}

}
}

}

//
// performs crossover of two selected parents
//
//***
void Xover(int one, int two, int CHROM_LENGTH)
{

int i;
int point; // crossover point

point=(rand() % (CHROM_LENGTH - 1)) + 1;
for (i=l; i<=point; i++){

swap(Scpopulation[one] .gene[i], &population[two] .gene[i]);
}

}

//
// swap 2 variables
//
//***
void swap(double *x, double *y)
{

double temp;

temp=*x;
*x=*y;
*y=temp;

}

//
// Mutation operator

328

Appendix E: STATS_X.dat Data Fields

//
void mutate (int CHROM_LENGTH)
{

int i, j;
double lower_bound, hbound;
double x;

for (i=0; i<POPSIZE; i++){
for (j=l; j<=CHROM_LENGTH; j++){

x=rand()%1000/1000.0;
if (x<PMUTATION) {

// find the bounds on the variable to be mutated
lower_bound=population[i].lower[j];
hbound=population[i].upper[j];
population[i].gene[j]=randval(lower_bound, hbound);

}
)

yy***

//
// Progress report (output to file)
//

void progress_report(int generation, FILE* ga_stat, double *best_val, double *worst_val,
double *avg, double best_fitness_gen, double worst_fitness_gen)

{
int i;
double stddev; // std. deviation of population fitness
double sum_s<juare; // sum of square for std. calc
double square_sum; // square of sum for std. calc
double sum; // total population fitness

sum=0.0;
sum_square=0.0 ;

for (i=0; i<POPSIZE; i++){
sum += population[i].fitness;
sum_square += population[i].fitness * population[i].fitness;
if (population[i]-fitness < *worst_val) *worst_val=population[i].fitness;

}

*avg=sum/ (double) POPSIZE;
square_sum=(*avg) * (*avg) * POPSIZE;
stddev=sqrt((sum_square - square_sum)/(POPSIZE - 1));
*best_val=population[POPSIZE].fitness;

fprintf(ga_stat, " %5d %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f\n'

generation, *best_val, *worst_val, best_fitness_gen, worst_fitness_gen,
*avg, *avg+stddev, *avg-stddev, stddev);

}

//
// Allocate Memory for Structures

/y**

struct battle_parameters *get_bat(void)
{

struct battle_parameters *p ;

if ((P = _fmalloc(sizeof(struct battle_parameters))) == NULL) (
_clearscreen(_GCLEARSCREEN);
printfl "Insufficient Memory to Run");
exit(O) ,-

}
return p;

}

struct red_parameters *get_red(void)
{

struct red_parameters *p;

if ((P = _fmalloc(sizeof(struct red_parameters))) == NULL) {
_clearscreen (_GCLEARSCREEN) ;
printfl "Insufficient Memory to Run");
exit(0);

}

329

Appendix E: STATSJJLdat Data Fields

return p;
}

struct blue_parameters *get_blue(void)
{

struct blue_parameters *p;

if ((P = _fmalloc(sizeof (struct blue_parameters)))
_clearscreen(_GCLEÄRSCREEN);
printf("Insufficient Memory to Run");
exit(O);

}
return p;

NULL) {

/********************************** *********** ********* ***************/

Write chromosome of best ISAACA personality to file
/*
/*
/*
/A***

void WRITE_CHROM_TO_FILE(int g, FILE *ga_stat, int initial_condition_genes_flag)
{

int ii;

(int)(population[g].gene[43]))
(int)(population[g].gene[44]))
(int)(population[g].gene [45]))

if (initial_condition_genes_flag==l){
fprintf (ga_stat,"\n initial box size = %i"
fprintf (ga_stat,"\n x-coor = %i"
fprintf (ga_stat,"\n y-coor = %i"
fprintf (ga_stat,"\n");

}
fprintf (ga_stat,"\n S-range = %i",(int)(population[g].gene[l])) ;
ii = (int) (population[g] .gene[2]) ;
if (ii > (int)(population[g].gene[1)))

ii=(int)(population[g].gene[l]) ;
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf

(ga_stat,"\n F-range
(ga_stat,"\n C-range
(ga_stat,"\n wl_a
(ga_stat,"\n w2_a
(ga_stat,"\n w3_a
(ga_stat,"\n w4_a
(ga_stat,"\n w5_a
(ga_stat,"\n w6_a
(ga_stat,"\n wl_i
(ga_stat,"\n w2_i
(ga_stat,"\n w3_i

,ii);

(ga_stat,"\n w4_i
(ga_stat,"\n w5_i
(ga_stat,"\n w6_i
(ga_stat, "\n ADV_a
(ga_stat,"\n CLS_a
(ga_stat,"\n CBT_a
(ga_stat,"\n ADV_i
(ga_stat,"\n CLS_i
(ga_stat,"\n CBT_i

if (population[g].gene[36] <
fprintf (ga_stat, "\n R_R.
fprintf (ga_stat,"\n R_B_a =
fprintf (ga_stat,"\n R_RG_a =
fprintf (ga_stat,"\n R_R_i =
fprintf (ga_stat,"\n R_B_i =
fprintf (ga_stat,"\n R_RG_i =

,(int)(population[g].gene[3]))
3f",SIGN(population[g].gene[5]
3f",SIGN(population[g].gene[7]
3f",SIGN(population[g].gene[9]

%3.3f",SIGN(population[g].gene[11
%3.3f",SIGN(population[g].gene[13
%3.3f",SIGN(population[g].gene[15
%3.3 f",SIGN(population[g].gene[17
%3.3f",SIGN(population[g].gene[19
%3.3f, SIGN (population [g] .gene [21
%3.3f,SIGN(population[g].gene[23
%3.3f",SIGN(population[g].gene[25
%3.3 f",SIGN(population[g].gene[27

,(int)(population[g].gene[28])
,(int)(population[g].gene[29])
,SIGN(population[g].gene[31])*
,(int)(population[g].gene[32])
,(int)(population[g].gene[33])
SIGN(population[g].gene[35])

= %i
= %i
= %i
= %i
= %i
= %i
.5){
.a

»population[g].gene[4]);
•population[g].gene[6]);
♦population[g].gene[8]);
»population[g].gene[10])
»population[g].gene[12])
»population[g].gene[14])
»population[g].gene[16])
»population[g].gene[18])
»population[g].gene[20])
»population[g].gene[22])
»population[g].gene[24])
»population[g].gene[26])

int)(population[g].gene[30]));

int)(population[g].gene[34]));
//do not use min_dist genes 37-42
0.00'
0.00'
0.00'
0.00'
0.00'
0.00'

}
else{

fprintf
fprintf
fprintf
fprintf
fprintf
fprintf

}
fprintf(ga_stat

(ga_stat,
(ga_stat,
(ga_stat,
(ga_stat,
(ga_stat,
(ga_stat,

"\n");

\n R_R_a
\n R_B_a
\n R_RG_a
\n R_R_i
\n R_B_i
\n R_RG_i

%f"
%f"
%f"
%f
%f
%f"

,population[g].gene[37])
,population[g].gene[38])
,population[g].gene[39])
,population[g].gene[40])
,population[g].gene[41])
,population[g].gene[42])

}

********** ********

Write mission fitness measure to file

/********************
/*
/*
/*
/♦A***

void WRITE_FITNESS(FILE *ga_stat, struct mission_objective *m, int termination_code,
int max_time_to_goal)

{

*****/
*/
*/
*/ *****/

330

Appendix E: STATS_X.dat Data Fields

// print out fitness parameters
fprintff ga_stat,"\n");
fprintff ga_stat,
fprintf(ga_stat,
fprintff ga_stat,
fprintff ga_stat,
fprintff ga_stat,
fprintff ga_stat,
fprintff ga_stat,
fprintff ga_stat,
fprintff ga_stat,
fprintff ga_stat,
fprintff ga_stat,
fprintff ga_stat,
switch (termination_code)

case 1:
fprintff ga_stat,
break;

case 2:
fprintff ga_stat,

(int)(m->near_range_num)
break;

"Fitness Parameters:
\n"),-
"time to goal:
"red loss:
"blue loss:
"red CM to blue flag
"blue CM to red flag
"red near blue flag:
"blue near red flag:
"red fratricide:
"blue fratricide:
\n");

{

\n");

%2.21f\n"
%2.21f\n"
%2.21f\n"

: %2.21f\n"
: %2.21f\n"
%2.21f\n"
%2.21f\n"
%2.21f\n"
%2.21f\n"

,m->alpha_l)
,m->alpha_2)
,m->alpha_3)
,m->alpha_4)
,m->alpha_5)
,m->alpha_6)
,m->alpha_7)
,m->alpha_8)
,m->alpha_9)

"termination condition: First RED at goal\n");

"termination condition: N(RED)>%i w/R=%i\n"
(int)(m->near_range));

case 3:
fprintf(
break;

case 4:
fprintf (
break;

ga_stat, "termination condition: RED_CM < %2.21fR_max\n", m->r_CM_f);

ga_stat, "termination condition: t_max=%3i\n", max_time_to_goal);

}
fprintf(ga_stat,"\n");

************ **************** r******************** ************************/

Write chromosome of best ISAACA personality to file

/************** ************** *********** **/
void DECODE_BEST(struct red_parameters *redp, int min_dist_genes_flag,

int initial_condition_genes_flag)
{

// now re-define ISAACA force with genome-prescribed personality
redp->irsrange = (int)(population[POPSIZE].genetl]);

if (redp->irsrange == 0)redp->irsrange=l;
redp->iredfrange = (int)(population[POPSIZE].gene[2]);

if (redp->iredfrange == 0)redp->iredfrange=l;
// make sure F-range <= S-range
if (redp->iredfrange > redp->irsrange)redp->iredfrange = redp->irsrange;

redp->iradvxange[l] = (int)(population[POPSIZE].gene[3]);
if (redp->iradvrange[l

redp->wlrdeff_a = (float
if (populationlPOPSIZE:

redp->w2rdeff_a = (float
if (populationlPOPSIZE!

redp->w3rdeff_a = (float
if (populationlPOPSIZE;

redp->w4rdeff_a = (float
if (populationlPOPSIZE

redp->w5rdeff_a = (float
if (populationlPOPSIZE!

redp->w6rdeff_a = (float
if (populationlPOPSIZE:

redp->wlrdeff_i = (float
if (populationlPOPSIZE!

redp->w2rdeff_i = (float
if (populationlPOPSIZE:

redp->w3rdeff_i = (float
if (populationlPOPSIZE

redp->w4rdeff_i = (float
if (populationlPOPSIZE

redp->w5rdeff_i = (float
if (populationlPOPSIZE

redp->w6rdeff_i = (float
if (populationlPOPSIZE

redp->iradv_a[l] = (int)
redp->irclus_a[1] = (int
redp->ircom_a[l] = (int)

if (populationlPOPSIZE
redp->iradv_i[l] = (int)
redp->irclus_i[l] = (int
redp->ircom_i[l] = (int)

if (populationlPOPSIZE

] == 0)redp->iradvrange[1]=1;
)(populationlPOPSIZE].gene[4]);
).gene[5] < .5)redp->wlrdeff_a
)(populationlPOPSIZE].gene[6]);
].gene[7] < .5)redp->w2rdeff_a
)(populationlPOPSIZE].gene[8]);
].gene[9] < .5)redp->w3rdeff_a
)(populationlPOPSIZE].gene[10])
].gene[ll] < .5)redp->w4rdeff_a
)(populationlPOPSIZE].gene[12])
].gene[13] < .5)redp->w5rdeff_a
)(populationlPOPSIZE].gene[14])
].gene[15] < .5)redp->w6rdeff_a
)(populationlPOPSIZE].gene[16])
].gene[17] < .5)redp->wlrdeff_i
)(populationlPOPSIZE].gene[18])
].gene[19] < .5)redp->w2rdeff_i
)(populationlPOPSIZE).gene[20])
].gene[21] < .5)redp->w3rdeff_i
)(populationlPOPSIZE].gene[22])
].gene[23] < .5)redp->w4rdeff_i
)(populationlPOPSIZE].gene[24])
].gene[25] < .5)redp->w5rdeff_i
)(populationlPOPSIZE).gene[26])
].gene[27] < .5)redp->w6rdeff_i
(populationlPOPSIZE).gene[28]);
)(populationlPOPSIZE].gene[29]);
(populationlPOPSIZE].gene[30]);
].gene[31] < .5)redp->ircom_a[l]
(populationlPOPSIZE].gene[32]);
)(populationlPOPSIZE].gene[33]);
(populationlPOPSIZE].gene[34]);
).gene[35] < .5)redp->ircom_i[l]

331

-redp->wlrde f f_a;

-redp->w2rdeff_a;

-redp->w3rdeff_a;

= -redp->w4rdeff_a;

= -redp->w5rdeff_a;

= -redp->w6rdeff_a;

= -redp->wlrdeff_i;

= -redp->w2rdeff_i;

= -redp->w3rdeff_i;

= -redp->w4rdeff_i;

= -redp->w5rdeff_i;

= -redp->w6rdeff_i;

= -redp->ircom_a[l];

= -redp->ircom_i[l];

Appendix E: STATS_X.dat Data Fields

if (min_dist_genes_flag==l){
if (population[POPSIZE).gene[36] > .5){ // the use min dist genes (37-42)

redp->zrfromrmindist_a= (float)(population[POPSIZE].genet37]);
redp->zbfromrmindist_a= (float)(population[POPSIZE].gene[38]);
redp->zrfromrgmindist_a= (float)(population[POPSIZE].gene[39]);
redp->zrfromrmindist_i= (float)(population[POPSIZE].gene[40]);
redp->zbfromrmindist_i= (float)(population[POPSIZE].gene[41]);
redp->zrfromrgmindist_i= (float)(population[POPSIZE].gene[42]);

}
else{

redp->zrfromrmindist_a= 0;
redp->zbfromrmindist_a= 0;
redp->zrfromrgmindist_a= 0;
redp->zrfromrmindist_i= 0;
redp->zbfromrmindist_i= 0;
redp->zrfromrgmindist_i= 0;

}
}
else{
population[POPSIZE].gene[36] = 0
population[POPSIZE].gene[37] = 0
population[POPSIZE].gene[38] = 0
populationtPOPSIZE].gene[39] = 0
populationtPOPSIZE].gene[40] = 0
populationtPOPSIZE].gene[41] = 0
populationtPOPSIZE].gene[42] = 0
redp->zrfromrmindist_a= 0;
redp->zbfromrmindist_a= 0;
redp->zrfromrgmindist_a= 0;
redp->zrfromntiindist_i= 0;
redp->zbfromrmindist_i= 0 ;
redp->zrfromrgmindist_i= 0;

}

if (initial_condition_genes_flag==l) {
battle.ibattlebox_red_length = (int)(populationtPOPSIZE].gene[43]);
battle.ibattlebox_red_width = (int)(populationtPOPSIZE].gene[43]);
battle.ibattlebox_red_cen_x = (int)(populationtPOPSIZE).gene[44]);
battle.ibattlebox_red_cen_y = (int)(populationtPOPSIZE).gene[45));

}
else{

populationtPOPSIZE).gene[43]
populationtPOPSIZE].gene[44]
populationtPOPSIZE].gene[45]

}

************************* ************ ***********

Show chromosome

********** ************************

***************/
*/■

*/
*/

*** /

/*
/*
/*
void SH0W_CHR0MOSOME (int mem, int initial_condition_genes_flag)
t

int iil, Ü2;

_moveto(525, 175);
_setcolor(2);
„outgtext (" *** RED ISAACA PERSONALITY ***");
_moveto(525, 190) ;
_setcolor(2);
_outgtext (" CURRENT BEST");
_settextposition(14, 73);
printf("S-range = %3i (%3i)",(int)(population[mem].genetl]), (int)(populationtPOPSIZE].genetl)));
iil = (int)(population[mem].gene[2]);
if (iil > (int)(population[mem).gene[1]))

iil=(int)(population[mem].genetl]);
Ü2 = (int) (populationtPOPSIZE) .gene[2]) ;
if (Ü2 > (int) (populationtPOPSIZE) .genetl)))

ii2=(int)(populationtPOPSIZE).genetl]);
_settextposition(15, 73);
printf("F-range = %3i (%3i)",iil, ii2);
_settextposition(16, 73);
printf ("C-range = %3i (%3i)", (int) (population[mem] .gene[3]), (int) (populationtPOPSIZE) .gene [3])) ,-
_settextposition(17, 73);
printf("wl_a = %+6.2f (%+6.2f)",SIGN(population[mem].gene[5])«population[mem].gene[4],

SIGN(population[POPSIZE].gene[5])«populationtPOPSIZE].gene[4]);
_settextposition(18, 73);
printf("w2_a = %+6.2f (%+6.2f)",SIGN(population[mem].gene[7))«population[mem].gene[6],

SIGN(population[POPSIZE].gene[7])«populationtPOPSIZE].gene[6]);

332

Appendix E: STATS_X.dat Data Fields

_settextposition(19, 73);
printf("w3_a = %+6.2f (%+6.2f)",SIGN(population[mem].gene[9])«population[mem].gene[8],

SIGN(population[POPSIZE].gene[9])«population[POPSIZE].gene[8]);
_settextposition(20, 73);
printfCw4_a = %+6.2f (%+6.2f)",SIGN(population[mem].genelll])»population[mem].gene[10],

SIGN(population[POPSIZE].gene[11])«population[POPSIZE].gene[10]);
_settextposition(21, 73);
printf("w5_a = %+6.2f (%+6.2f)",SIGN(population[mem].gene[13])«population[mem].gene[12],

SIGN(population[POPSIZE].gene[13])«population[POPSIZE].gene[12]);
_settextposition(22, 73);
printf("w6_a = %+6.2f (%+6.2f)",SIGN(population[mem].gene[15])«population[mem].gene[14],

SIGN(population[POPSIZE].gene[15])«population[POPSIZE].gene[14]);
_settextposition(23, 73);
printf("wl_i = %+6.2f (%+6.2f)",SIGN(population[mem].gene[17])«population[mem].gene[16],

SIGN(population[POPSIZE].gene[17])«population[POPSIZE].gene[16]);
_settextposition(24, 73);
printf("w2_i = %+6.2f (%+6.2f)",SIGN(population[mem].gene[19])«population[mem].gene[18],

SIGN (population[POPSIZE].gene[19])«population[POPSIZE].gene[18]);
_settextposition(25, 73);
printf("w3_i = %+6.2f (%+6.2f)",SIGN(population[mem].gene[21])«population[mem].gene[20],

SIGN(population[POPSIZE].gene[21])«population[POPSIZE].gene[20]),-
_settextposition(26, 73);
printf("w4_i = %+6.2f (%+6.2f)",SIGN(population[mem].gene[23])«population[mem].gene[22],

SIGN(population[POPSIZE].gene[23])«population[POPSIZE].gene[22]);
_settextposition(27, 73);
printf("w5_i = %+6.2f (%+6.2f)",SIGN(population[mem].gene[25])«population[mem].gene[24],

SIGN(population[POPSIZE].gene[25])«population[POPSIZE].gene[24]);
_settextposition(28, 73) ;
printf("w6_i = %+6.2f (%+6.2f)",SIGN(population[mem].gene[27])«population[mem].gene[26],

SIGN(population[POPSIZE].gene[27])«population[POPSIZE].gene[26]);
_settextposition(29,.73);
printf("ÄDV_a = %3i (%3i)",(int)(population[mem].gene[28]),(int)(population[POPSIZE].gene[28]));
_settextposition(30,.73) ;
printf("CLS_a = %3i (%3i)",(int)(population[mem].gene[29]),(int)(population[POPSIZE].gene[29]));
_settextposition(31, 73);
printf("CBT_a = %3i (%3i)",SIGN(population[mem].gene[31])*(int)(population[mem].gene[30]),

SIGN(population[POPSIZE].gene[31])*(int)(population[POPSIZE].gene[30]));
_settextposition(32, 73);
printf ("ADV_i = %3i (%3i)", (int) (population[mem] .gene[32]), (int) (population[POPSIZE] .gene[32])) ,-
_settextposition(33, 73);
printf("CLS_i = %3i (%3i)",(int)(population[mem].gene[33]),(int)(population[POPSIZE].gene[33]));
_settextposition(34, 73);
printf("CBT_i = %3i (%3i)",SIGN(population[mem].gene[35])*(int)(population[mem].gene[34]),

SIGN(population[POPSIZE].gene[35])*(int)(population[POPSIZE].gene[34]));
}

int SIGN(double x)
{

if (x<=.5){
return -1;

}
else{

return 1;
}

}

333

Appendix E: STATS_X.dat Data Fields

Appendix E: STATS_X.dat Data Fields

STATS l.dat

STATS 2.dat

This appendix provides a complete listing of the contents of each data
field appearing in each of the 21 statistics output files that can be
generated by ISAAC (see table 8 in Data Collection). This information
can be used to generate desired plots using a stand-alone plotting
program.

STATS_l.dat contains a summary of basic force strength measures and
consists of the following seven fields:

• field 1: iteration step (i.e., time)

• field 2: fraction of remaining alive red ISAACAs

• field 3: fraction of remaining injured red ISAACAs

• field 4: fraction of remaining (alive + injured) red ISAACAs

• field 5: fraction of remaining alive blue ISAACAs

• field 6: fraction of remaining injured blue ISAACAs

• field 7: fraction of remaining (alive + injured) blue ISAACAs

STATS_2.dat contains distributions of the number of ISAACA pairs less
than or equal to a certain distance apart and consists of the following
five fields:

• field 1: distance (D)

• field 2: iteration step (i.e., time)

• field 3: # of red-red pairs less than or equal to a distance (D)
apart

• field 4: # of blue-blue pairs less than or equal to a distance (D)
apart

• field 5: # of red-blue pairs less than or equal to a distance (D)
apart

335

Appendix E: STATS_X.dat Data Fields

STATS 3.dat

STATS 4.dat

STATS 5.dat

STATS_3-dat contains distributions of the number of red and blue
ISAACA less than or equal to a certain distance from their enemy flag.
It consists of the following four fields:

• field 1: distance (D)

• field 2: iteration step (i.e., time)

• field 3: # of red ISAACAs that are < distance (D) from the blue
flag

• field 4: # of blue ISAACAs that are < distance (D) from the red
flag

STATS_4.dat summarizes the actual interpoint distributions appearing
in field 3 of STATS_2.dat above by providing their averages and
standard deviations. It consists of the following seven fields:

• field 1: iteration step (i.e., time)

• field 2: average of red-red interpoint distances

• field 3: red-red average + red-red absolute deviation

• field 4: red-red average - red-red absolute deviation

• field 5: absolute deviation of red-red interpoint distances

• field 6: standard deviation of red-red interpoint distances

• field 7: variance of red-red interpoint distances

STATS_5.dat summarizes the actual interpoint distributions appearing
in field 4 of STATS_2.dat above by providing their averages and
standard deviations. It consists of the following seven fields:

• field 1: iteration step (i.e., time)

• field 2: average of blue-blue interpoint distances

• field 3: blue-blue average + blue-blue absolute deviation

• field 4: blue-blue average - blue-blue absolute deviation

336

Appendix E: STATS_X.dat Data Fields

STATS 6.dat

STATS 7.dat

field 5: absolute deviation of blue-blue interpoint distances

field 6: standard deviation of blue-blue interpoint distances

field 7: variance of blue-blue interpoint distances

STATS_6.dat summarizes the actual interpoint distributions appearing
in field 5 of STATS_2.dat above by providing their averages and
standard deviations. It consists of the following seven fields:

• field 1: iteration step (i.e., time)

• field 2: average of red-blue interpoint distances

• field 3: red-blue average + red-blue absolute deviation

• field 4: red-blue average - red-blue absolute deviation

• field 5: absolute deviation of red-blue interpoint distances

• field 6: standard deviation of red-blue interpoint distances

• field 7: variance of red-blue interpoint distances

STATS_7.dat summarizes the actual interpoint distributions appearing
in field 3 of STATS_3.dat above by providing their averages and
standard deviations. It consists of the following seven fields:

• field 1: iteration step (i.e., time)

• field 2: average of red:blue-flag interpoint distances

• field 3: red:blue-flag average + red:blue-flag absolute deviation

• field 4: red:blue-flag average - red:blue-flag absolute deviation

• field 5: absolute deviation of red:blue-flag interpoint distances

• field 6: standard deviation of red:blue-flag interpoint distances

• field 7: variance of red:blue-flag interpoint distances

337

Appendix E: STATS_X.dat Data Fields

STATS 8.dat

STATS 9.dat

STATS 10.dat

STATS_8.dat summarizes the actual interpoint distributions appearing
in field 4 of STATS_3.dat above by providing their averages and
standard deviations. It consists of the following seven fields:

• field 1:

• field 2:

• field 3:

• field 4:

• field 5:

• field 6:

• field 7:

iteration step (i.e., time)

average of blue:red-flag interpoint distances

blue:red-flag average + blue:red-flag absolute deviation

blue:red-flag average - blue:red-flag absolute deviation

absolute deviation of blue:red-flag interpoint distances

standard deviation of blue:red-flag interpoint distances

variance of blue:red-flag interpoint distances

STATS_9.dat contains estimates of the spatial entropy (see Spatial Entropy
above) of the distribution of red and blue ISAACAs. It consists of the
following ten fields:

field 1: iteration step (i.e., time)

field 2: red entropy (using a 4x4 array of 20x20 blocks)

field 3: blue entropy (using a 4x4 array of 20x20 blocks)

field 4: red-blue entropy (using a 4x4 array of 20x20 blocks)

field 5: red entropy (using a 8x8 array of 10x10 blocks)

field 6: blue entropy (using a 8x8 array of 10x10 blocks)

field 7: red-blue entropy (using a 8x8 array of 10x10 blocks)

field 8: red entropy (using a 16x16 array of 5x5 blocks)

field 9: blue entropy (using a 16x16 array of 5x5 blocks)

field 10: red blue entropy (using a 16x16 array of 5x5 blocks)

STATS_10.dat contains the distribution of clusters of red and blue
ISAACAs using an inter-cluster distance criterion of D=l (see Appendix
F: Cluster Counting Algorithm). It consists of the following 14 fields:

338

Appendix E: STATS_X.dat Data Fields

field 1: iteration step (i.e., time)

field 2: total number of clusters

field 3: number of clusters of size N=l

field 4: number of clusters of size N=2 through N=5

field 5: number of clusters of size N=6 through N=10

field 6: number of clusters of size N=ll through N=15

field 7: number of clusters of size N=16 through N=20

field 8: number of clusters of size N=21 through N=-25

field 9: number of clusters of size N=26 through N=-30

field 10: number of clusters of size N=31 through N=35

field 11: number of clusters of size N=36 through N=40

field 12: number of clusters of size N=41 through N=45

field 13: number of clusters of size N=46 through N=50

field 14: number of clusters of size N=51 through N=MAX

STATS ll.dat

STATS_ll.dat contains the averages and deviations of sizes of clusters
of red and blue ISAACAs using an inter-cluster distance criterion of
D=l (see Appendix F: Cluster Counting Algorithm). It consists of the
following seven fields:

. • field 1: iteration step (i.e., time)

• field 2: average cluster size

• field 3: average cluster size + absolute deviation

• field 4: average cluster size - absolute deviation

• field 5: absolute deviation of average cluster size

• field 6: standard deviation of average cluster size

• field 7: variance of cluster size

339

Appendix E: STATS_X.dat Data Fields

STATS 12.dat

STATS 13.dat

STATS_12.dat contains the distribution of clusters of red and blue
ISAACAs using an inter-cluster distance criterion of D=2 (see Appendix
F: Cluster Counting Algorithm). It consists of the following 14 fields:

field 1: iteration step (i.e., time)

field 2: total number of clusters

field 3: number of clusters of size N=l

field 4: number of clusters of size N=2 through N=5

field 5: number of clusters of size N=6 through N=10

field 6: number of clusters of size N=l 1 through N=l 5

field 7: number of clusters of size N=16 through N=20

field 8: number of clusters of size N=21 through N=-25

field 9: number of clusters of size N=26 through N=-30

field 10: number of clusters of size N=31 through N=35

field 11: number of clusters of size N=36 through N=40

field 12: number of clusters of size N=41 through N=45

field 13: number of clusters of size N=46 through N=50

field 14: number of clusters of size N=51 through N=MAX

STATS_13.dat contains the averages and deviations of sizes of clusters
of red and blue ISAACAs using an inter-cluster distance criterion of
D=2 (see Appendix F: Cluster Counting Algorithm). It consists of the
following seven fields:

• field 1: iteration step (i.e., time)

• field 2: average cluster size

• field 3: average cluster size + absolute deviation

• field 4: average cluster size - absolute deviation

• field 5: absolute deviation of average cluster size

• field 6: standard deviation of average cluster size

340

Appendix E: STATS_X.dat Data Fields

field 7: variance of cluster size

STATS 14.dat

STATS_14.dat contains the averages and deviations of the number of
red ISAACAs within a range R=l,2,...5 of red ISAACAs. It consists of the
following 21 fields:

field 1: iteration step (i.e., time)

field 2: average # of red within R=l of red

field 3: average # of red within R=l of red + absolute deviation

field 4: average # of red within R=l of red - absolute deviation

field 5: absolute deviation for range R=l

field 6: average # of red within R=2 of red

field 7: average # of red within R=2 of red + absolute deviation

field 8: average # of red within R=2 of red - absolute deviation

field 9: absolute deviation for range R=2

field 10: average # of red within R=3 of red

field 11: average # of red within R=3 of red + absolute deviation

field 12: average # of red within R=3 of red - absolute deviation

field 13: absolute deviation for range R=3

field 14: average # of red within R=4 of red

field 15: average # of red within R=4 of red + absolute deviation

field 16: average # of red within R=4 of red - absolute deviation

field 17: absolute deviation for range R=4

field 18: average # of red within R=5 of red

field 19: average # of red within R=5 of red + absolute deviation

field 20: average # of red within R=5 of red - absolute deviation

field 21: absolute deviation for range R=5

341

Appendix E: STATS_X.dat Data Fields

STATS 15.dat

STATS_15.dat contains the averages and deviations of the number of
blue ISAACAs within a range R=l,2,...5 of blue ISAACAs. It consists of
the following 21 fields:

field 1: iteration step (i.e., time)

field 2: average # of blue within R=l of blue

field 3: average # of blue within R=l of blue + absolute deviation

field 4: average # of blue within R=l of blue - absolute deviation

field 5: absolute deviation for range R=l

field 6: average # of blue within R=2 of blue

field 7: average # of blue within R=2 of blue + absolute deviation

field 8: average # of blue within R=2 of blue - absolute deviation

field 9: absolute deviation for range R=2

field 10: average # of blue within R=3 of blue

field 11: average # of blue within R=3 of blue + absolute deviation

field 12: average # of blue within R=3 of blue - absolute deviation

field 13: absolute deviation for range R=3

field 14: average # of blue within R=4 of blue

field 15: average # of blue within R=4 of blue + absolute deviation

field 16: average # of blue within R=4 of blue - absolute deviation

field 17: absolute deviation for range R=4

field 18: average # of blue within R=5 of blue

field 19: average # of blue within R=5 of blue + absolute deviation

field 20: average # of blue within R=5 of blue - absolute deviation

field 21: absolute deviation for range R=5

STATS 16.dat

STATS_16.dat contains the averages and deviations of the number of
red ISAACAs within a range R=l,2,...5 of blue ISAACAs. It consists of the
following 21 fields:

342

Appendix E: STATSJLdat Data Fields

STATS 17.dat

field 1: iteration step (i.e., time)

field 2: average # of red within R=l of blue

field 3: average # of red within R=l of blue + absolute deviation

field 4: average # of red within R=l of blue - absolute deviation

field 5: absolute deviation for range R=l

field 6: average # of red within R=2 of blue

field 7: average # of red within R=2 of blue + absolute deviation

field 8: average # of red within R=2 of blue - absolute deviation

field 9: absolute deviation for range R=2

field 10: average # of red within R=3 of blue

field 11: average # of red within R=3 of blue + absolute deviation

field 12: average # of red within R=3 of blue - absolute deviation

field 13: absolute deviation for range R=3

field 14: average # of red within R=4 of blue

field 15: average # of red within R=4 of blue + absolute deviation

field 16: average # of red within R=4 of blue - absolute deviation

field 17: absolute deviation for range R=4

field 18: average # of red within R=5 of blue

field 19: average # of red within R=5 of blue + absolute deviation

field 20: average # of red within R=5 of blue - absolute deviation

field 21: absolute deviation for range R=5

STATS_l7.dat contains the averages and deviations of the number of
blue ISAACAs within a range R=l,2,...5 of red ISAACAs. It consists of the
following 21 fields:

• field 1: iteration step (i.e., time)

• field 2: average # of blue within R=l of red

• field 3: average # of blue within R=l of red + absolute deviation

• field 4: average # of blue within R=l of red - absolute deviation

343

Appendix E: STATS_X.dat Data Fields

field 5: absolute deviation for range R=l

field 6: average # of blue within R=2 of red

field 7: average # of blue within R=2 of red + absolute deviation

field 8: average # of blue within R=2 of red - absolute deviation

field 9: absolute deviation for range R=2

field 10: average # of blue within R=3 of red

field 11: average # of blue within R=3 of red + absolute deviation

field 12: average # of blue within R=3 of red - absolute deviation

field 13: absolute deviation for range R=3

field 14: average # of blue within R=4 of red

field 15: average # of blue within R=4 of red + absolute deviation

field 16: average # of blue within R=4 of red - absolute deviation

field 17: absolute deviation for range R=4

field 18: average # of blue within R=5 of red

field 19: average # of blue within R=5 of red + absolute deviation

field 20: average # of blue within R=5 of red - absolute deviation

field 21: absolute deviation for range R=5

STATS 18.dat

STATS_18.dat contains the averages and deviations of the number of
both red and blue ISAACAs within a range R=l,2,...5 of red ISAACAs. It
consists of the following 21 fields:

• field 1: iteration step (i.e., time)

• field 2: average # of ISAACAs within R=l of red

• field 3: average # of ISAACAs /w R=l of red + absolute deviation

• field 4: average # of ISAACAs /w R=l of red - absolute deviation

• field 5: absolute deviation for range R=l

• field 6: average # of ISAACAs /w R=2 of red

• field 7: average # of ISAACAs /w R=2 of red + absolute deviation

• field 8: average # of ISAACAs /w R=2 of red - absolute deviation

344

Appendix E: STATS_X.dat Data Fields

• field 9: absolute deviation for range R=2

• field 10:average* of ISAACAs /wR=3ofred

• field 11: average # of ISAACAs /w R=3 of red + absolute
deviation

• field 12: average # of ISAACAs /w R=3 of red - absolute deviation

• field 13: absolute deviation for range R=3

• field 14: average # of ISAACAs /w R=4 of red

• field 15: average # of ISAACAs /w R=4 of red + absolute
deviation

• field 16: average # of ISAACAs /w R=4 of red - absolute deviation

• field 17: absolute deviation for range R=4

• field 18: average # of ISAACAs /w R=5 of red

• field 19: average # of ISAACAs /w R=5 of red + absolute
deviation

• field 20: average # of ISAACAs /w R=5 of red - absolute deviation

• field 21: absolute deviation for range R=5

STATS 19.dat

STATS_19.dat contains the averages and deviations of the number of
both red and blue ISAACAs within a range R=l,2,...5 of blue ISAACAs. It
consists of the following 21 fields:

• field 1: iteration step (i.e., time)

• field 2: average # of ISAACAs within R=l of blue

• field 3: average # of ISAACAs /w R=l of blue + absolute
deviation

• field 4: average # of ISAACAs /w R=l of blue - absolute deviation

• field 5: absolute deviation for range R=l

• field 6: average # of ISAACAs /w R=2 of blue

• field 7: average # of ISAACAs /w R=2 of blue + absolute
deviation

• field 8: average # of ISAACAs /w R=2 of blue - absolute deviation

• field 9: absolute deviation for range R=2

345

Appendix E: STATS_X.dat Data Fields

• field 10:average* of ISAACAs /wR=3ofblue

• field 11: ave # of ISAACAs /w R=3 of blue + absolute deviation

• field 12: ave # of ISAACAs /w R=3 of blue - absolute deviation

• field 13: absolute deviation for range R=3

• field 14: average # of ISAACAs /w R=4 of blue

• field 15: ave # of ISAACAs /wR=4ofblue + absolute deviation

• field 16: ave # of ISAACAs /w R=4 of blue - absolute deviation

• field 17: absolute deviation for range R=4

• field 18: average* of ISAACAs /wR=5ofblue

• field 19: ave # of ISAACAs /w R=5 of blue + absolute deviation

• field 20: ave # of ISAACAs /w R=5 of blue - absolute deviation

• field 21: absolute deviation for range R=5

STATS_20.dat

STATS_20.dat contains the center-of-mass (COM) coordinates of red
and blue ISAACAs and the distances between the center-of-mass
positions and red and blue flags. It consists of the following thirteen
fields:

• field 1: iteration step (i.e., time)

• field 2: red COM x-coordinate

• field 3: red COM y-coordinate

• field 4: distance between red COM x-coordinate and red flag

• field 5: distance between red COM x-coordinate and blue flag

• field 6: blue COM x-coordinate

• field 7: blue COM y-coordinate

• field 8: distance between blue COM x-coordinate and red flag

• field 9: distance between blue COM x-coordinate and blue flag

• field 10: total (red+blue) COM x-coordinate

• field 11: total (red+blue) COM y-coordinate

• field 12: distance between total COM x-coordinate and red flag

346

Appendix E: STATS_X.dat Data Fields

field 13: distance between total COM x-coordinate and blue flag

STATS 21.dat

STATS_21.dat contains the number of red and blue ISAACAs within
ranges R=l,2,...,5 of the red and blue flags, expressed as the fraction of
the maximum possible number. It consists of the following eleven
fields:

field 1: iteration step (i.e., time)

field 2: number of red within R=l of blue flag

field 3: number of blue within R=l of red flag

field 4: number of red within R=2 of blue flag

field 5: number of blue within R=2 of red flag

field 6: number of red within R=3 of blue flag

field 7: number of blue within R=3 of red flag

field 8: number of red within R=4 of blue flag

field 9: number of blue within R=4 of red flag

field 10: number of red within R=5 of blue flag

field 11: number of blue within R=5 of red flag

347

Appendix F: Cluster Counting Algorithm

Appendix F: Cluster Counting Algorithm
ISAAC'S rudimentary data collection capability provides facilities to
calculate seven basic classes Of information; see Data Collection. The fifth
class of data consists of keeping track of the averages and distributions
of the sizes of clusters of ISAACAs. Because this class of data provides an
insight into the gross structural appearance of the entire battlefield, it
can be thought of as a crude pattern recognition measure. This
appendix provides a brief heuristic description of the cluster counting
algorithm (as implemented in ISAAC_CE and ISAAC_SQ) and includes
the C source code listing of the function that implements this algorithm
(i.e., CLUSTER_1 in ISAAC_T3.c; see Table 12). The contents of the
output files is described in

Heuristic Recipe

The cluster counting algorithm used by ISAAC is patterned after the
Hoshen-Kopelman algorithm described in [50]. A heuristic description of
this algorithm follows.

Given a distribution of ISAACAs spread throughout the battlefield, the
"cluster counting problem" is to find an algorithm that assigns all
ISAACAs within the same cluster the same label and gives different
labels to ISAACAs belonging to different clusters. An ISAACA's
membership within a cluster is defined by an inter-cluster distance
criterion of either D=l (meaning that two ISAACAs that are separated
by one lattice cell belong to the same cluster) or D=2 (meaning that two
ISAACAs that are separated by one or two lattice cells belong to the same
cluster).

The approach is to scan the battlefield - cell by cell and row by row -
assigning cluster-specific labels to occupied cells, and leaving empty
cells alone. The first cluster that is encountered gets assigned the label
L=l. Neighboring occupied cells, within the same row, get assigned the
same label. As the scan continues to the right, occupied cells that are
farther than D=l (or D=2) from the right-most occupied cell of the first
cluster are assigned the label L=2, and so on.

A potential problem occurs with this labeling scheme when ISAACAs
belonging to the same cluster are inadvertently assigned different labels
on different rows. Consider figure 93, which shows a fragment of the
same cluster on two successive rows, and the result of applying the
heuristic cluster-counting algorithm as thus far described (using D=l as
the inter-cluster distance criterion).

Figure 93 shows that the first cell (on the upper left), which is occupied,
is immediately assigned the label L=l. The second cell is empty and is

349

Appendix F: Cluster Counting Algorithm

left alone. The third cell contains an ISAACA that is farther from cell #1
than one unit, and is therefore assigned the label L=2. This labeling
scheme continues through the second row until we reach the "question
mark," at which point we have to make a decision. What label should we
assign to this cell? According to the top row, the label is L=3. According
to the second row, the label is L=2. The answer is that we choose L=2 to
keep the total number of labels as small as possible. We must also
relabel the cell with L=3 with L=2 to indicate that it is really part of the
same cluster as defined by label L=2.

Figure 93. A fragment of a cluster of ISAACAs and the result of
applying the cluster-counting heuristic

o 1 2 3

1 2 2 2 ?

More generally, the Hoshen-Kopelman heuristic is to partition all labels
into two groups: good labels and bad labels. The good labels refer to labels
that correctly characterize distinct clusters. The bad labels refer to
labels that appear at first to characterize a new cluster but are actually
assigned to cells belonging to previously labeled clusters.

These two groups are kept track of by an additional array, the label of
labels (called label_of_labels[i] in CLUSTER! below). A good label, say
1, is characterized by label_of_labels[lg]=lg. A bad label, say lb, is
characterized by label_of_labels[lb]=x, where x < lb. In this way, the
battlefield is first scanned in the manner described above, and each
cluster is assigned a initial label (or set of labels). After the scan is
completed, the cells are relabeled according to the following logic:

• If the label of a cell is lc, check to see if label_of_labels[lc] = lc: if
yes, then the label is good (leave it alone); if no, then the label is
bad, and label_of_labels[lc] = lc'.

• Check to see if label_of_labels[lc'] = lc': if yes, then the label is
good (relabel the cell with initial label lc with the label lc'); if no,
then the label is bad, and label_of_labels[lc'] = lc".

• Continue in this way until the search ends with a good label, say
1 , and relabel the cell with that label.

350

Appendix F: Cluster Counting Algorithm

Source Code
/ /*********************************A*A* A*. ******* A A A** A* A

II
II returns the distribution of cluster sizes
// (using inter-cluster distance criteria of D=l)
// '
/ /AAMHtitÄÄA'A'A'A'A'llpArArA'A "A A1 A A A A A A A A A A'^A&AititAA^A'AAAAA A AA'A&AA?£A^AAAA A A A AA A£A£A'ArAA'AAAArA'AA'A?'fcAA^Al£A?A?AA&AA?A?ib&AAA'

void CLUSTER_l(int isize, struct red_parameters *redp, struct blue_parameters *bluep,
struct battle_parameters *batp, struct statistics *s)

int i, j, ll, n;
int label_min, ix, iy;
int count[MAXCLUSTERSIZE+l];
int label_of_labels[MAXCLUSTERSIZE+l];
int "label;
float ep=0,ss;

//
// allocate memory for label
//
label = (int**) _fmalloc((MAXISAACNUM+1) * sizeof(int*));
if (Ilabel) nomem();
for (i = 0; i < (MAXISAACNUM+1); i++){

label[i] = (int*) _fmalloc((MAXISAACNUM+1) * sizeof(int));
if (!label[i]) nomem();

}

// initialize label matrix
for (i=l; i<=batp->isize; i++){

for (j=l; j<=batp->isize; j++){
// label < 0 if ISA AC A is present, else 0
label[i]fj] = -batp->ioccupation[i]|j];

// initialize 'good'-label matrix
for (i=l; i<=MAXCLUSTERSIZE; i++){

label_of_labels[i]=MAXCLUSTERSIZE;

// initialize cluster count variable to zero
n = 0;

// loop through battlefield
for (i=l; i<=batp->isize; i++){

for (j=l; j<=batp->isize;]'++){
if(n==0){

if (label[i]Ij] < 0){ // then found first ISAACA without a label
n=l;
label[i][j]=l;
label_of_labels[l]=l;

}
}
else{ // see if i,j belongs to known clusters (at neighboring sites)

// if < 0 then ISAACA at i,j does not yet have a label
if(label[i][j]<0){

// give it a temporary large label
label_min = MAXCLUSTERSIZE + 1;

351

Appendix F: Cluster Counting Algorithm

// need to test these sites:
//
// (i-l,j-l) | (i,j-l) | xxxxxxx
//
// (i-l/j) | IJ | xxxxxxx
//
// (i-l,j+l) | xxxxxxx | xxxxxxx
//

//first try i-l,j-l
ix = i-1;
iy = j-l;
if (ix > 0 && ix <= batp->isize && iy > 0 && iy <=batp->isize){

if (label[ix][iy] < label_min && label[ix][iy] > 0)
label_min = label[ix][iy];

}
//tryi,j-l
ix = i;
iy = j-l;
if (ix > 0 && ix <= batp->isize && iy > 0 && iy <=batp->isize){

if (labelfix] [iy] < label_min && label[ix][iy] > 0)
label_min = label[ix][iy];

}
//try i-1, j
ix = i-1;
iy=j;
if (ix > 0 && ix <= batp->isize && iy > 0 && iy <=batp->isize){

if (label[ix][iy] < label_min && labelfix] [iy] > 0)
label_min = label[ix][iy];

}
//tryi-l,j+l
ix = i-1;
iy = j+i;
if (ix > 0 && ix <= batp->isize && iy > 0 && iy <=batp->isize){

if (labelfix] [iy] < label_min && label[ix][iy] > 0)
label_min = labelfix] [iy];

if (labeLmin < MAXCLUSTERSIZE + 1) {
// give i,j the minimum valued label
label[i][j] = label_min;

// change all neighboring label_of_labels to label_min
// first look at i-1, j-1
ix = i-1;
iy = j-l;
if (ix > 0 && ix <= batp->isize &&

iy > 0 && iy <=batp->isize){
if (labelfix] [iy] > label_min &&

label_of_labels[label[ix][iy]] > label_min){
label_of_labelsflabel[ix][iy]] = label_min;

}
}
// look at i, j-1
ix = i;
iy = j-l;
if (ix > 0 && ix <= batp->isize &&

iy > 0 && iy <=batp->isize){
if (labelfix] [iy] > label_min &&

label_of_labels[label[ix][iy]] > label_min){
label_of_labels[label[ix][iy]] = label_min;

}
}
// look at i-1, j
ix = i-1;

352

Appendix F: Cluster Counting Algorithm

}
else{

iy=j;
if (ix > 0 && ix <= batp->isize &&

iy > 0 && iy <=batp->isize){
if (labelfix] [iy] > labeLmin &&

label_of_labels[label[ix][iy]] > label_min){
label_of_labels[label[ix][iy]] = label_min;

}
}
// look at i-1, j+1
ix = i-1;
iy = j+i;
if (ix > 0 && ix <= batp->isize &&

iy > 0 && iy <=batp->isize){
if (labelfix] [iy] > kbel_min &&

label_of_labels[label[ix][iy]] > label_min){
label_of_labels[label[ix][iy]] = labeLmin;

}
}

// i,j could not be attached to old cluster; add a new cluster
++n;
label[i][j]=n;
label_of_labels[n]=n; // mark as a 'good' label

}

//
// find the array of real (i.e. 'good') labels
//
for (i=l; i<=batp->isize; i++){

for (j=l; j<=batp->isize;]'++){
if(label[i]fj]>0){

doagain: 11 = label[i][j];
label[i][j] = label_of_labels[label[i]fj]];
if (11 != label[i][j]) goto doagain;

}
}

//
// initialize count array
//
for (i=l; i<=MAXCLUSTERSIZE; ++i){

count[i] = 0;
}

//
// get the size of each cluster (labeled by label[i][j] = l,2,...n)
//
for (i=l; i<=batp->isize; i++){

for (j=l; j<=batp->isize; j++){
if (label[i][j] > 0) ++count[label[i][j]];

}
}

//
// initialize cluster distribution
//
for (i=l; i<=MAXCLUSTERSIZE; i++) s->clusters_l[i] = 0;

353

Appendix F: Cluster Counting Algorithm

//
// get cluster distribution
//
s->number_of_clusters_l = 0;
for (i=l; i<=MAXCLUSTERSIZE; i++){

++s->clusters_l [count[i]];
if (count[i]>0) ++s->number_of_clusters_l;

//AA

II
II calculate averages and deviations
//

// initialize average cluster
s->cluster_l_ave = 0;

AAA

// calculate average cluster size
for(i=l;i<=n;i++){
s->cluster_l_ave = s->cluster_l_ave + (float)(count[i]);

}

if (s->number_of_clusters_l < 2){
s->cluster_l_adev = 0;
s->cluster_l_var = 0;
s->cluster_l_sdev = 0;

}
else{

s->cluster_l_ave = s->cluster_l_ave / (float)(s->number_of_clusters_l);
// calculate deviation
s->cluster_l_adev = 0;
s->cluster_l_var = 0;
for (i=l; i<=n; i++){

if (count[i]>0) {
ss = (float)(count[i]) - s->cluster_l_ave;
s->cluster_l_adev = s->cluster_l_adev + abs_float(ss);
ep = ep + ss;
s->cluster_l_var = s->cluster_l_var + (ss*ss);

}
}
s->cluster_l_adev = s->cluster_l_adev / (float)(s->number_of_clusters_l);
s->cluster_l_var = (s->cluster_l_var - ep*ep/(float)(s->number_of_clusters_l))/

(float) ((s->number_of_clusters_l-l));
if(s->cluster_l_var < 0) s->cluster_l_var = 0;
s->cluster_l_sdev= (float) (sqrt((double) (s->cluster_l_var)));

}

//
// free memory
//

for (i = 0; i < (MAXISAACNUM+1); i++){
_ffree(label[i]);

}
_ffree(label);

/AA

354

Appendix G: Sample Input Data Files

Appendix G: Sample Input Data Files
This appendix contains sample data input files for ISAAC_CE (i.e.,
ISAAC'S multi-squad core-engine), ISAAC_GA (i.e., the stand-alone
genetic algorithm "evolver") and ISAAC_PM (i.e., the parameter-space
"mapper").

Sample Data Input Füe for ISAAC_CE: ISAAC.dat

ISAAC.dat is the input data file for ISAAC_CE. The section A Concise
User's Guide to ISAAC described the contents of this file. Note that this
file does not include command and control related parameter values
(described in pertinent sections of Contents of ISAAC'S Input Data File;
see figures 28 and 29).

* GENERAL BATTLE PARAMETERS

batüe_size 80
*

* initial distribution
*
init_dist 1
R_box_(l,w) 20,20 10,10 20,20 20,20 20,20 20,20 20,20 20,20 20,20 20,20
RED_cen_(x,y) 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10
B_box_(l,w) 35,35 35,35 35,35 35,35 35,35 35,35 35,35 35,35 35,35 35,35
BLUE_cen_(x,y) 70,70 70,70 70,70 70,70 70,70 70,70 70,70 70,70 70,70 70,70
B_flag_(x,y) 79,79
R_flag_(x,y) 1,1
termination? 2
move_order? 2
combat_flag? 2
terrain_flag? 0

* fratricide parameters

red_frat_flag? 0
blue_frat_flag? 0
red_frat_rad 1
blue_frat_rad 1
red_frat_prob 0.001000
blue_frat_prob 0.001000

* reconstitution
*
reconst_flag? 0
RED_recon_time 10
BLUE_recon_time 10
AkkkAAAAAAAAAAAAAAAAAAAkkkkkkkkkkkkkk

* STATISTICS PARAMETERS

stat_flag? 0
goal_stat_flag? 0
center_mass_flag? 0
interpoint_flag? 0
entropy_flag? 0
cluster_l_flag? 0

355

Appendix G: Sample Input Data Files

cluster_2_flag? 0
neighbors_flag? 0
*AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*A*A*AAAAAAA*AAAAA

* RED GLOBAL COMMAND PARAMETERS

RED_global_flag 0

* BLUE GLOBAL COMMAND PARAMETERS

BLUE_global_flag 0
**
* RED LOCAL COMMAND PARAMETERS

RED_command_flag 0
AAA*

* BLUE LOCAL COMMAND PARAMETERS

BLUE_command_flag 0
***»*mUA*AAA*AAAAAAAAAAAAAAAAAAAAAAAAA

* RED ISAACA PARAMETERS

nurn_reds 100
squads 1
num_per_squad 100 25 25 25 0 0 0 0 0 0
M_RANGE 1 112222222
personality 1

* ALIVE personality weights
*
wl_a:R_alive_R 10.000 76.00 10.00 10.000 76.000 76.000 76.000 76.000 76.000 76.000
w2_a:R_alive_B 40.100 61.00 99.00 99.100 61.100 61.100 61.100 61.100 61.100 61.100
w3_a:R_injrd_R 10.100 10.100 0.100 -4.100 -4.100 -4.100 -4.100 -4.100 -1.100 -4.100
w4_a:R_injrd_B 40.500 99.500 99.000 99.000 99.500 99.500 76.000 76.000 76.000 76.000
w5_a:R_R_goal 0.000 0.000 0.000 16.100 16.100 -16.100 -16.100 -16.100 -16.100 -16.100
w6_a:R_B_goal 50.000 47.000 25.000 25.000 47.000 47.000 47.000 47.000 47.000 47.000

' INJURED personality weights

wl_i:
w2_i:
w3_i:
w4_i:
w5_i:

R_alive_R 76.000 76.00 20.00 20.000 76.000 76.000 76.000 76.000 76.000 76.000
R_alive_B 61.100 61.00 99.100 99.100 61.100 61.100 61.100 61.100 61.100 61.100
:R_injrd_R -4.100 -4.100 0.100 -4.100 -4.100 -1.100 -4.100 -4.100 -4.100 -4.100
R_injrd_B 99.500 99.500 99.000 99.000 99.500 99.500 76.000 76.000 76.000 76.000
R_R_goal 50.100 0.100 0.000 16.100 16.100 -16.100 -16.100 -16.100 -16.100 -16.100

w6_i:R_B_goal 0.000 47.000 25.000 25.000 47.000 47.000 47.000 47.000 47.000 47.000
*
* ISAACA-LC weights
*
w7:R_loc_comdr 1.000000
w8:R_loc_goal 1.000000
*
* defense parameters
*
defense_flag 1
alive_strength 1112111111
injured_strength 1112111111
*
* sensor/fire ranges

S_RANGE 5578888888
F_RANGE 3333888888
*

* communications

COMM_flag 0
COMM_range 0

356

Appendix G: Sample Input Data Files

COMM_weight 0.000000
*
* movement constraints

movement_flag 1
C_RANGE 5 4 3 5 7 7 7 7 7 7
A:ADVANCE_num 3 3 0 0 111111
A:CLUSTER_num 3 5 7 7 16 16 16 16 16 16
A:COMBAT_num 0 1 -5 -5 -1 -1 -1 -1 -1 -1
I:ADVANCE_num 4 4 0 0 9 9 9 9 9 9
I:CLUSTER_num 9 9 7 7999999

I:COMBAT_num 6 6 -5 -5 -16 -16 -16 -16 -16 -16
C_RANGE_(m,M) 1,4
A:ADV_(m,M) 0,4
A:CLUS_(m,M) 1,0
A:COMB_(m,M) -3,3
l:ADV_(m,M) 0,4
I:CLUS_(m,M) 1,8
I:COMB_(m,M) -3,3
A:R_R_min_dist 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A:R_B_min_dist 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A:R_R_goal_min 20.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
I:R_R_min_dist 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
I:R_B_min_dist 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
I:R_R_goal_min 10.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

* cqmbat/ engagement

shot_prob 0.005 0.007 0.010 0.005 0.005 0.005 0.005 0.005 0.005 0.005
R_max_eng_num 557 10 222222

* BLUE ISAACA PARAMETERS
»***************AAAAAAAAAAAAAAAAAAAAAAA

num_blues J00
squads 1
num_per_squad 100 15 23 0 0 0 0 0 0 0
M_RANGE 1 11 2222222
personality 1
*

* ALIVE personality weights
*

wl_a:B_alive_B 10.000 10.000 76.000 76.000 76.000 76.000 76.000 76.000 76.000 76.000
w2_a:B_alive_R 40.100 100.00 61.00 61.100 61.100 61.100 61.100 61.100 61.100 61.100
w3_a:B_injrd_B 10.000 0.000 0.000 -4.100 -4.100 -1.100 -4.100 -4.100 -1.100 -4.100
w4_a:B_injrd_R 40.500 99.500 76.000 76.000 99.500 99.500 76.000 76.000 76.000 76.000
w5_a:B_B_goal 0.000 0.000 0.000 -16.100 -16.100 -16.100 -16.100 -16.100 -16.100 -16.100
w6_a:B_R_goal 50.000 99.000 47.000 47.000 47.000 47.000 47.000 47.000 47.000 47.000

* INJURED personality weights

wl_i:B_aHve_B 10.000 76.000 76.000 76.000 76.000 76.000 76.000 76.000 76.000 76.000
w2_i:B_alive_R 40.100 61.100 61.100 61.100 61.100 61.100 61.100 61.100 61.100 61.100
w3_i:B_injrd_B 10.100 -4.100 -4.100 -1.100 -4.100 -4.100 -4.100 -1.100 -4.100 -4.100
w4_i:B_injrd_R 40.500 99.500 76.000 76.000 99.500 99.500 76.000 76.000 76.000 76.000
w5_i:B_B_goal 0.100 -16.100 -16.100 -16.100 -16.100 -16.100 -16.100 -16.100 -16.100 -16.100
w6_i:B_R_goal 50.000 47.000 47.000 47.000 47.000 47.000 47.000 47.000 47.000 47.000

* ISAACA-LC weights

w7:B_loc_comdr 1.000000
w8:B_loc_goal 1.000000
*
* defense parameters

defense_flag 1

357

Appendix G: Sample Input Data Files

4 3 7 7 7 7 7 7 7
0 0 1 1 1 1 1 1 1
5 7 16 16 16 16 16 16 16
-5 -1 -1 -1 -1 -1 ■1 • 1 - 1

alive_strength 1111111111
injured_strength 1111111111

* sensor/ fire ranges
*
S_RANGE 5873333333
FJRANGE 3433333333
*
* communications
*
COMM_flag 0
COMM_range 0
COMM_weight 0.000000
*

* movement constraints

movement_flag 1
CLRANGE 3
A:ADVANCE_num2
A:CLUSTER_num 8
A:COMBAT_num 3
I:ADVANCE_num 3999999999
LCLUSTERnum 12 999999999
LCOMBATnum 5 -2 -16 -16 -16 -16 -16 -16 -16 -16
C_RANGE_(m,M) 1,4
A:ADV_(m,M) 0,4
A:CLUS_(m,M) 1,8
A:COMB_(m,M) -3,3
I:ADV_(m,M) 0,4
I:CLUS_(m,M) 1,8
I:COMB_(m,M) -3,3
A:RJ?_min_dist 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A:R_B_min_dist 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A:R_R_goal_min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
I:R_R_min_dist 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
I:R_B_min_dist 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
I:R_R_goal_min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
*
* combat/ engagement

shot_prob 0.005 0.010 0.010 0.005 0.005 0.005 0.005 0.005 0.005 0.005
B_max_eng_num 5322222222

* TERRAIN PARAMETERS
************* ****** **************
(l)_size 2
(l)_center_x 32
(l)_center_y 50
(2)_size 5
(2)_center_x 44
(2)_center_y 44
(3)_size 2
(3)_center_x 58
(3)_center_y 50

358

Appendix G: Sample Input Data Files

Sample Data Input Files for ISAAC_GA

ISAAC_GA uses two input data files:

• GA_ISAAC.dat, which is the default name of the file that
contains a truncated version of ISAAC'S input data file (see
Contents of ISAAC'S Input Data File in A Concise User's Guide to
ISAAC)

• GA_DATA.dat, which is the default name of the file that contain
GA-specific data entries needed to start the run (see Contents of
ISAACjGA's Input Data File in Genetic Algorithm Evolutions of
ISAACA Personalities).

GA ISAAC.dat

Note that GA_ISAAC.dat defines single-squad red and blue forces and
does not contain any command and control parameters.

**
* GENERAL BATTLE PARAMETERS

battie_size 50
*

* initial distribution

init dist 1
R_box_(Lw) 15,15
RED_cen_(x,y) 10,10
B_box_(l,w) 15,15
BLUE_cen_(x,y) 40,40
B_flag_(X/y) 49,49
R_flag_(x,y) 1,1
termination? 2
move order? 2
combat_flag? 2
terrain_flag?
*

0

* fratricide parameters
*

red_frat_flag? 0
blue_frat_flag? 0
red_frat_rad 1
blue_frat_rad 1
red_frat_prob 0.001000
blue_frat_prob
*

0.001000

* reconstitution
*

reconst_flag? 0
RED_recon_time 1
BLUE_recon_time 1

* STATISTICS PARAMETERS

stat_flag? 0

359

Appendix G: Sample Input Data Files

goal_stat_flag? 0
center_mass_flag? 0
interpoint_flag? 0
entropy_flag? 0
cluster_l_flag? 0
cluster_2_flag? 0
neighbors_flag? 0
AA*

* RED GLOBAL COMMAND PARAMETERS

RED_global_flag 0

* BLUE GLOBAL COMMAND PARAMETERS

BLUE_global_flag 0

* RED LOCAL COMMAND PARAMETERS
AAA

RED_command_flag 0

* BLUE LOCAL COMMAND PARAMETERS
AAA

BLUE_command_flag 0

* RED ISAACA PARAMETERS
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

num_reds 50
M_RANGE 1
personality 1

* ALIVE personality weights

wl_a:R_alive_R 10.000000
w2_a:R_alive_B 40.000000
w3_a:R_injrd_R 10.000000
w4_a:R_injrd_B 40.000000
w5_a:R_R_goal 0.000000
w6_a:R_B_goal 0.000000

* INJURED personality weights
*
wl_i:R_alive_R 10.000000
w2_i:R_alive_B 40.000000
w3_i:R_injrd_R 10.000000
w4_i:R_injrd_B 40.000000
w5_i:R_R_goal 0.000000
w6_i:R_B_goal 0.000000

* ISAACA-LC weights

w7:R_loc_comdr 1.
w8:R_loc_goal 1.

* sensor/fire ranges

S_RANGE 1
F_RANGE 1

* communications
*
COMM_flag 0
COMM_range 0
COMM_weight 0.000000

* movement constraints

360

Appendix G: Sample Input Data Files

movement_flag 1
C_RANGE 3
A:ADVANCE_num 1
A:CLUSTER man 5
A:COMBAT_num -3
I:ADVANCE_num 1
I:CLUSTER_num 5
I:COMBAT num -3
C_RANGE_(m,M) 0,0
A:ADV_(m,M) 0,0
A:CLUS_(m,M) 0,0
A:COMB_(m,M) 0,0
I:ADV_(m,M) 0,0
I:CLUS_(m,M) 0,0
I:COMB_(m,M) 0,0
A:R_R_min_dist 0.000000
A:R_B_min_dist 0.000000
A:R_R_goal_min 0.000000
I:R_R_min_dist 0.000000
I:R_B_min_dist 0.000000
I:R_R_goal_min 0.000000

* combat/ engagement
*

shot_prob 0.005000
R_max_eng_num 6

* BLUE ISAACA PARAMETERS

num_bhies 50
M.RANGE 1
personality 1
*
* ALIVE personality weights

wl_a:B_alive_B 5.000000
w2_a:B_alive_R 99.000000
w3_a:B_injrd_B 0.000000
w4_a:B_injrd_R 99.000000
w5_a:B_B_goal 0.000000
w6_a:B_R_goal 50.000000
*
* INJURED personality weights
*

wl_i:B_alive_B 5.000000
w2_i:B_alive_R 99.000000
w3_i:B_injrd_B 0.000000
w4_i:B_injrd_R 99.000000
w5_i:B_B_goal 0.00
w6_i:B_R_goal 50.000000
*
* ISAACA-LC weights

w7:B_loc_comdr 1.
w8:BJoc_goal 1.
*
* sensor/ fire ranges

S_RANGE 4
F_RANGE 3

* communications

COMM_flag 0

361

Appendix G: Sample Input Data Files

COMM_range 0
COMM_weight 0.000000

* movement constraints

movement_flag 1
C RANGE 3
A:ADVANCE_num 0
A:CLUSTER_num 1
A:COMBAT_num -3
I:ADVANCE_num 0
I:CLUSTER_num 1
I:COMBAT_num -3
C_RANGE_(m,M) 0,0
A:ADV_(m,M) 40,0
A:CLUS_(m,M) 0,0
A:COMB_(m,M) 10,0
I:ADV_(m,M) 0,0
I:CLUS_(m,M) 40,0
I:COMB_(m,M) 0,0
A:B_B_min_dist 0.000000
A:B_R_min_dist 0.000000
A:B_B_goal_min 0.000000
I:B_B_min_dist 0.000000
I:B_R_min_dist 0.000000
I:BJB_goal_min
*

0.000000

* combat/ engagement
*
shot_prob 0.005000
B_max_eng_num 6

* TERRAIN PARAMETERS

GA DATA.dat

*********************AAA*******************

GA parameters

num_generations 50
num_initial_conds 25
max_time_to_goal 100
penalry_power 2
best_personalities_to_füe? 1
min_dist_genes_flag 0
initial_condition_genes_flag 0

* penalty weights (1-100)

AAAAAA***********A*AAAAAA**AAAAAAAA*******A

wl_time_to_goal 0
w2_friendly_loss 0
w3_enemy_loss 0
w4_red_to_blue_survival_ratio 0
w5_friendly_CM_to_enemy_flag 0
w6_enemy_CM_to_friendly_flag 10
w7_friendly_near_enemy_flag 0

362

Appendix G: Sample Input Data Files

w8_enemy_nearjriendly_flag 10
w9_red_fratridde_hits 0
wlO_blue_fratricide_hits 0

*
* termination parameters
*
AA»

termination_code? 4
flag_containment_range 12
containment_number 10
red CM_to_BF_frac .5

ISAACA chromosome

gene[l]:S_range 1,10
gene[2]:F_range 1,10
gene[3]:C_range 1,10
gene[4]:wl_alive 0,100
gene[5]:wl_alive_sign 0,1
gene[6]:w2_alive 0,100
gene[7]:w2_alive_sign 0,1
gene[8]:w3_alive 0,100
gene'[9]:w3_alive_sign 0,1
gene[10]:w4_alive 0,100
gene[ll]:w4_alive_sign 0,1
gene[12]:w5_alive 0,100
gene[13]:w5_alive_sign 0,1
gene[14]:w6_alive 0,100
gene[15]:w6_alive_sign 0,1
gene[16]:wl_injured 0,100
gene[17]:wl_injured_sign 0,1
gene[18]:w2_injured 0,100
gene[19]:w2_injured_sign 0,1
gene[20]:w3_injured 0,100
gene[21]:w3_injured_sign 0,1
gene[22]:w4_injured 0,100
gene[23]:w4_injured_sign 0,1
gene[24]:w5_injured 0,100
gene[25]:w5_injured_sign 0,1
gene[26]:w6_injured 0,100
gene[27]:w6_injured_sign 0,1
gene[28]:ADV_alive 0,20
gene[29]:CLS_alive 0,50
gene[30]:CBT_alive 0,50
gene[31]:CBT_alive_sign 0,1
gene[32]:ADV_injured 0,20
gene[33]:CLS_injured 0,50
gene[34]:CBT_injured 0,50
gene[35]:CBT_injured_sign 0,1
gene[36]:min_dist_flag 0,1
gene[37]:R_R_min_dist_alive 0,10
gene[38]:R_B_min_dist_alive 0,10
gene[39]:R_R_goal_min_alive 0,40
gene[40]:R_R_min_dist_injured 0,10
gene[41]:R3_min_dist_injiired 0,10
gene[42]:R_R^oal_min_injured 0,40
gene[43]:initial_box_size 1,50
gene[44]:initial_box_center_x 1,30
gene[45]:initial_box_center_y 1,30

363

Appendix G: Sample Input Data Files

Sample Data Input File for ISAAC_PM: PHASE.dat

ISAAC_PM uses two input data files:

• P_ISAAC.dat, that contains a truncated version of ISAAC'S input
data file (see Contents of ISAAC'S Input File in Concise User's Guide
to ISAAC). This file has exactly the same form as GA_ISAAC.dat
shown above. Like GA_ISAAC.dat, P_ISAAC.dat defines
single-squad red and blue forces and does not contain any
command and control parameters.

• PHASE.dat, that contains ISAAC_PM-specific data entries
needed to start the run. It is essentially a truncated version of
GA_DATA.dat (see above). See Contents of ISAAC_PM's Data Input

File: Phase.dat.

AA

* GA parameters
*
AA-AA-AA

num_initial_conds 15
max_time_to_goal 125
penalty_power 2
AA

*

* penalty weights (1-100)
*
AA

wl_time_to_goal 0
w2_friendly_loss 10
w3_enemy_loss 0
w4_red_to_bliie_survival_ratio 0
w5_friendly_CM_to_enemy_flag 0
w6_enemy_CM_to_friendly_flag 0
w7_friendly_near_enemy_flag 0
w8_enemy_near_friendly_flag 0
w9_red_fratricide_hits 0
wlO_blue_fratricide_hits 0
AA

*

* termination parameters
*
AA

termination_code? 4
flag_containment_range 15
containment_number 10

red CM to BF frac .5

364

References

References

1. A. Ilachinski, Land Warfare and Complexity, Part I: Mathematical
Background and Technical Sourcebook (U), Center for Naval
Analyses Information Manual CIM-461, July 1996, Unclassified.

2. A. Ilachinski, Land Warfare and Complexity, Part II: An Assessment
of the Applicability of Nonlinear Dynamics and Complex Systems
Theory to the Study of Land Warfare (U), Center for Naval
Analyses Research Memorandum CRM-68, July 1996,
Unclassified.

3. F. W. Lanchester, "Aircraft in warfare: the dawn of the fourth
arm - No. V, the principle of concentration," Engineering,
Volume 98, 1914, 422-423. (Reprinted on pages 2138-2148, The
World of Mathematics, Volume IV, edited by J. Newman, Simon
and Schuster, 1956.)

4. J. V. Chase, "A mathematical investigation of the effect of
superiority in combats upon the sea," 1902, reprinted in B. A.
Fiske, The Navy as a Fighting Machine, Annapolis, MD: U.S.
Naval Institute Press, 1988.

5. M. Osipov, "The Influence of the Numerical Strength of
Engaged Forces in Their Casualties," translated by R. L.
Helmbold and A. S. Rehm, Naval Research Logistics, Volume 42,
No. 3, April 1995, 435-490.

6. W. D. Hillis, "Co-evolving parasites improve simulated evolution
as an optimization procedure," Physica D, Volume 42, 1990,
228-234.

7. A. Ilachinski, A Mobile Cellular Automata Approach to Land Combat:
A User's Guide to an Early Version of ISAAC (U), Center for Naval
Analyses Information Manual CIM-482, September 1996,
Unclassified.

8. D. S. Hartley III and R. L. Helmbold, 'Validating Lanchester's
square law and other attrition models," Naval Research Logistics,
Volume 42, May, 1995, 609-633.

9. H. K. Weiss, "Lanchester-type models of warfare," Proceedings
of 1st Conference on Operations Research, Operations
Research Society of America, 1957, 82-99.

365

References

10. J. Fain, "The Lanchester equations and historical warfare: an
analysis of sixty world war II land engagements," in Proceedings of
the 34th Military Operations Research Symposium, Alexandria,
Virginia: Military Operations Research Society, 1975.

11. Richard D. Hooker, Jr., editor, Maneuver Warfare: An Anthology,
Presidio, 1993.

12. C. G. Langton, editor, Artificial Life: The Proceedings of an
Interdisciplinary Workshop on the Synthesis and Simulation of Living
Systems Held September, 1987 in Los Alamos, New Mexico,
Addison-Wesley, 1989.

13. C. Reynolds, "Flocks, herds, and schools: a distributed
behavioral model," Computer Graphics, Volume 21, July, 1987,
25.

14. J. Deneubourg, , S. Goss, N. Franks, A. Sendova-Franks, C.
Detrain and L. Chretien, "The dynamics of collective sorting
robot-like ants and ant-like robots," pages 356-363 in From
Animals to Animats: Proceedings of the First International Conference
on Simulation of Adaptive Behavior, edited by Jean-Arcady Meyer
and Stewart W. Wilson, MIT Press, 1991.

15. J. Casti, Would-be Worlds: How Simulation is Changing the Frontiers
of Science, John Wiley and Sons, 1997..

16. J. M. Epstein and R. Axtell, Growing Artificial Societies: Social
Science From the Bottom Up, MIT Press, 1996.

17. P. Maes, "Modeling Adaptive Autonomous Agents," Artificial
Life, Volume 1, No. 1, 1994, 135-162.

18. L. Steels and R. Brooks, editors, The Artificial Life Route to
Artificial Intelligence, Lawrence Erlbaum Associates, 1995.

19. P. Maes, "Behavior-based artificial intelligence," pages 2-10 in
From Animals to Animats 2: Proceedings of the Second International
Conference on Simulation of Adaptive Behavior, edited by
Jean-Arcady Meyer, H. L. Roitblat and Stewart W. Wilson, MIT
Press, 1993.

20. N. Boccara, O. Roblin and M. Roger, "Automata network
predator-prey model with pursuit and evasion," Physical Review
£, Volume 50, No. 6, December 1994, 4531-4541.

366

References

21. O. Miramontes, R. Sole and B. Goodwin, "Collective behavior of
random-activated mobile cellular automata," Physica D, Volume
63,1993,145-160.

22. B. R. Sutherland and A. E. Jacobs, "Self-organization and
scaling in a lattice predator-prey model," Complex Systems,
Volume 8,1994, 385-405.

23. A. E. R. Woodcock, L. Cobb and J.T. Dockery, "Cellular
Automata: A New Method for Battlefield Simulation," Signal,
January, 41-50.

24. J. H. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control and
Artificial Intelligence, Second Edition, MIT Press, 1992.

25. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1989.

26. L. Davis, editor, Handbook of Genetic Algorithms, von Nostrand
Reinhold, 1991.

27. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, 2nd Edition, Springer-Verlag, 1996.

28. S. Forrest, editor, Proceedings of the Fifth International Conference
on Genetic Algorithms, Morgan Kauffman, 1993.

29. M. Mitchell, "Genetic algorithms," pages 3-87 in 1992 Lectures in
Complex Systems, edited by L. Nadel and D. Stein,
Addison-Wesley, 1993.

30. N. M. Smith, "A calculus for ethics: a theory of the structure of
value," Behavioral Science, Volume 1, No. 2, April, 1956, 111-142,
186-211.

31. L. P. Kaelbling, M. L. Littman and A. W. Moore,
"Reinforcement Learning: A Survey," Journal of Artificial
Intelligence Research, Volume 4, 1996, 237-285.

32. R. S. Sutton, "Learning to predict by the methods of temporal
differences," Machine Learning, Volume 3,1988, 9-44.

33: G. Tesauro, "Temporal difference learning and TD-Gammon,"
Communications of the ACM, Volume 38, No. 3, 1995, 58-67.

367

References

34. F. Carvalho-Rodrigues, "A proposed entropy measure for
assessing combat degradation," Jour. Opl. Res. Soc. (UK),
Volume 40, No. 8, 1989, 789-793.

35. J. T. Dockery and A. E. R. Woodcock, The Military Landscape:
Mathematical Models of Combat, Cambridge, England: Woodhead
Publishing Limited, 1993.

36. P. J. Denning, "Modeling Reality," American Scientist,
November-December 1990, 495-498.

37. J. Casti, Reality Rules, Volumes I and II, John Wiley and Sons,
1992.

38: R. Axelrod and W. D. Hamilton, "The evolution of
cooperation," Science, Volume 211,1981,1390-1396.

39. S. Kauffman, At Home in the Universe: The Search for Laws of
Self-Organization and Complexity, Oxford University Press, 1995.

40. P. Bak and K. Chen, "Self-Organized Criticality," Scientific
American, Volume 26, January 1991, 46-53.

41. L. F. Richardson, Statistics of Deadly Quarrels, Pitsburg, PA:
Boxwood, 1960.

42. N. Boccara, E. Goles, S. Martinez, and P. Picco, Cellular
Automata and Cooperative Systems, Conference Proceedings, Les
Houches, France,June 22 -July 2,1992, NATO ASI Series
Volume 396, Kluwer Academic Publishers, 1993.

43. H. A. Gutowitz, editor, Cellular Automata: Theory and Experiment,
Elsevier Science Publishers, 1990.

44; S. Wolfram, editor, Theory and Applications of Cellular Automata,
World Scientific, 1986.

45. S. Wolfram, Cellular Automata and Complexity: Collected Papers,
Addison-Wesley, 1994.

46. T. Toffoli and N. Margolus, Cellular Automata Machines: a New
Environment for Modeling, MIT Press, 1987.

47. Michael R. Garey and D. S.Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W. H. Freeman and
Company, 1979.

368

References

48. R. G. Palmer, "Optimization on rugged landscapes," pages 3-26
in Molecular Evolution on Rugged Landscapes: Proteins, RNA and the
Immune System, edited by A. S. Perelson and S. A. Kauffman,
Addison-Wesley, 1991.

49: S. Kauffman and S.Johnson, "Coevolution to the edge of chaos:
coupled fitness landscapes, poised states and coevolutionary
avalanches," pages 325-370 in Artificial Life II: The Proceedings of
the Workshop on Artificial Life Held February, 1990 in Santa Fe, New
Mexico, edited by C. G. Langton, C. Taylor, J. Doyne Farmer
and S. Rasmussen, Addison-Wesley, 1992.

50. S. Kauffman, Origins of Order: Self-Organization and Selection in
Evolution, Oxford University Press, 1993.

51. J. Hoshen and R. Kopelman, Physical Review B, Volume 14,
1976, 3428.

52. J. H. Holland, "Genetic Algorithms," Scientific American, Volume
278, No. 1, July, 1992, 66-72.

53. P. Tzionas, P. Tsalidis, and A. Thanailakis, "Three-dimensional
minimum cost path planning using cellular automata
architectures," Mobile Robots, Volume 7, 1992, 297.

54. J. Casti, "What if...", New Scientist, 13 July 1996, 36-40.

55. R. Leonhard, The Art of Maneuver: maneuver-Warfare Theory and
AirLand Battle, Presidio, 1991.

56. W. S. Lind, Maneuver Warfare Handbook, Westview Press, 1985.

57. J. H. Holland, Hidden Order: How Adaptation Builds Complexity,
Addison-Wesley Publishing Company, 1995.

58. E. Hillebrand and J. Stender, editors, Many-Agent Simulation and
Artificial Life, IOS Press,1994.

59. M. J. wooldridge and N. R. Jennings, editors, Intelligent Agents:
ECAI-94 Workshop, Springer-Verlag, 1995.

60. K Nagel and S. Rasmussen, "Traffic at the edge of chaos,"
pages 222-235 in Artificial Life IV, edited by R. A. Brooks and P.
Maes, MIT Press, 1994.

61: M. Resnick, Turtles, Termites, and Traffic Jams: Explorations in
Massively Parallel Microworlds, MIT Press, 1994.

369

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An ArtificialrLife Approach to Land Warfare

List of Figures

Figure 1. The force-on-force attrition "challenge" 6

Figure 2. Artificial Life: a possible new approach to the
classic force-on-force attrition problem? 8

Figure 3. Evolution of a one-dimensional CA starting from a
random initial state 10

Figure 4. Collective sorting by ant-like robots . . . 12

Figure 5. Schematic of ISAAC'S hierarchy of information
levels 23

Figure 6. Putative two-dimensional "Combat Battlefield" in
ISAAC 26

Figure 7. Various kinds of ranges that surround each
ISAACA 28

Figure 8. Set of possible ISAACA moves from its current
(x,y) position 32

Figure 9. General movement rule 33

Figure 10. Sample penalty calculation 33

Figure 11. Schematic of ISAACA Meta-Personality 34

Figure 12. Sample constraint rules 37

Figure 13. Blue X targets 3 Red ISAACAs 38

Figure 14. Schematic of a fratricide "hit" of X' by X 39

Figure 15. Schematic of ISAACA communications 40

Figure 16. Schematic representation of a ISAACA C2

hierarchy 41

Figure 17. Local command 42

Figure 18. Local command (sample calculation) 45

Figure 19. Plot of health (LC) versus number of enemy
ISAACAs 46

Figure 20. Rule for GC mediated LC-LC interaction 47

Figure 21. Global command 48

Figure 22. Rule for GC command of LC movement 49

Figure 23. ISAAC'S opening screen 52

Figure 24. ISAAC'S main option screen 53

Figure 25. ISAAC'S second option screen 53

Figure 26. General battle parameters 56

Figure 27. Statistics Parameters 60

371

irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 28. Blue global command parameters 62

Figure 29. Blue local command parameters 64

Figure 30. Blue ISAACA Parameters 70

Figure 31. Terrain parameters 82

Figure 32. ISAAC'S main graphics display 84

Figure 33. The Attrition data field of ISAAC'S main graphics
display 88

Figure 34. Main menu of the "on-the-fly" parameter change
option 91

Figure 35. Screen shot of the "on-the-fly" Combat Parameter
change sub-menu 92

Figure 36. Sample Run #1 - MISMATCH.out 104

Figure 37. Sample Run #2 -FLUID_l.out 107

Figure 38. Sample Run #3 - FLUID_2.out 109

Figure 39. Sample Run #4 - PRECESS.out 112

Figure 40. Sample Run #5 - GOALDEFl.out 114

Figure 41. Sample Run #6 - GOALDEF2.out 116

Figure 42. Sample Run #7 - CIRCLE.out 118

Figure 43. Sample Run #8 -FIRESTMl.out 120

Figure 44. Sample Run #9 - FIRESTM2.out 122

Figure 45. Sample Run #10 - SENSOR.out 125

Figure 46. Fragment ofLOCALCMD.dat input data file 126

Figure 47. Sample Run #11 - LOCALCMD.out 128

Figure 48. Fragment ofGLBALCMD.dat input data file 129

Figure 49. Sample Run #12 - GLBALCMD.out 131

Figure 50. Sample Run #13 - BATTLEl.out 133

Figure 51. Battlefield partitioned into an 8-by-8 array of
sub-blocks of size B/8 139

Figure 52. Opening screen for BATTLE.out 143

Figure 53. Snapshot views of BATTLE.out 144

Figure 54. Sample statistics measures for BATTLE.out 145

Figure 55. Schematic of taking a two dimensional (xp Xg)
"slice" through ISAAC'S N-dimensional parameter space 146

Figure 56. Schematic of how ISAAC_PM works 149

Figure 57. ISAAC_PM's opening screen 150

Figure 58. ISAACJPM's file name prompt screen 151

Figure 59. ISAAC_PM's prompt screen for specifying the
x-coodinate 151

372

irreducible Jemi-Autonomous adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 60. ISAACJPM's range/sample prompt screen 152

Figure 61. Sample PHASE.dat input data file 153

Figure 62. ISAAC_PM's main graphics display 156

Figure 63. Schematic of initial state for sample run #1 157

Figure 64. Output of ISAAC_PM for sample run #1 158

Figure 65. Output of ISAAC_PM for sample run #2 159

Figure 66. Output of ISAAC_PM for sample run #3 160

Figure 67. Schematic of the GA "problem" in ISAAC 167

Figure 68. Schematic for fitness function/(corresponding
to mission primitive m) that is internally maximized by
the program 171

Figure 69. ISAAC_GA's opening screen 178

Figure 70. ISAAC_GA's file name prompt screen 179

Figure 71. Sample ISAAC_GA data input file 185

Figure 72. Sample contents of the output file GA_STAT.dat 187

Figure 73. ISAAC_GA's main graphics display 191

Figure 74. Typical GA learning curve 192

Figure 75. Fragment of GAJDATAdat input data file for
Run #1 194

Figure 76. Sample GA Run #1 - AWA.Y_l.out 198

Figure 77. Sample GA Run #2 - GOAL_2.out 199

Figure 78. Sample GA Run #2 - GOAL_6.out 200

Figure 79. Sample GA Run #2 - GOAL_l.out 201

Figure 80. Illustration of a neural-net assigned move m (at
time t+1) given a local state S at time t 214

Figure 81. A schematic representation of "nesting" in
ISAAC 216

Figure 82. Interplay between experience and theory in the
forward- and inverse-problems of complex systems
theory 229

Figure 83. A schematic representation of an ISAACA C2

structure 230

Figure 84. Behavior (arbitrary measure) as a function of C2

structure 231

Figure 85. Schematic representation of the combat phase
space 234

Figure 86. A schematic representation of how genetic
algorithms may be used to find the "best" partitioning of
the combat information-space 241

Figure 87. Example of a one-dimensional CA 248

373

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

Figure 88. Glider patterns in Conway's Life 249

Figure 89. Two-dimensional lattice-gas simulation of a fluid 250

Figure 90. Collective behavior of a four dimensional CA 251

Figure 91. Schematic representation of the basic GA
operators 254

Figure 92. Sample forms of fitness landscapes 257

Figure 93. A fragment of a cluster of ISAACAs and the
result of applying the cluster-counting heuristic 350

374

Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life Approach to Land Warfare

List of Tables

Table 1. Land combat as a complex adaptive system 2

Table 2. Eight tiers of applicability 4

Table 3. Comparison between traditional and agent-based
approaches to complex systems modeling 17

Table 4. A listing of program "modules" making up ISAAC 20

Table 5. Components of the personality weight vector 30

Table 6. Tradeoff between available memory and some
basic run-time parameters in ISAAC 51

Table 7. ISAAC output files corresponding to the sample
runs shown in figures 36 through 50 100

Table 8. Description of ISAAC'S data output files 136

Table 9. ISAACA Chromosome 168

Table 10. A description of GA weights 169

Table 11. ISAAC output files corresponding to the sample
GA runs shown in figures 76 through 79 193

Table 12. ISAAC functions 299

375

Distribution list
Research Memorandum 97-61.10

Commanding General, Marine Corps Combat Development Center

CDRWhitener

NAS Oceana (VF-11)

Virginia Beach, VA 23456

377

